

Key Concepts and Skills

After studying this chapter, you should be able to:

- Determine the future value and present value of investments with multiple cash flows.
- Calculate loan payments, and find the interest rate on a loan.
- Describe how loans are amortized or paid off.
- Explain how interest rates are quoted (and misquoted).

Chapter Outline

5.1 Future and Present Values of Multiple Cash Flows
5.2 Valuing Level Cash Flows: Annuities and Perpetuities
5.3 Comparing Rates: The Effect of Compounding Periods
5.4 Loan Types and Loan Amortization

Multiple Cash Flows Computational Methods

- TVM Formulas
- Texas Instruments BA II+
- PV/FV keys
- Cash Flow Worksheet
- Present Value only
- Excel Spreadsheet/Functions

Future Value: Multiple Cash Flows Example 5.1

- You think you will be able to deposit $\$ 4,000$ at the end of each of the next three years in a bank account paying 8 percent interest.
- You currently have \$7,000 in the account.
- How much will you have in 3 years?
- How much in 4 years?

Future Value: Multiple Cash Flows Example 5.1 - Formulas

- Find the value at year 3 of each cash flow and add them together.
- Year 0: FV = \$7,000(1.08) $=\$ 8,817.98$
- Year 1: FV = \$4,000(1.08) ${ }^{2}=\$ 4,665.60$
- Year 2: FV = \$4,000(1.08) ${ }^{1}=\$ 4,320.00$
- Year 3: value $=\$ 4,000.00$
- Total value in 3 years $=\$ 21,803.58$
- Value at year $4=\$ 21,803.58(1.08)=\$ 23,547.87$

Calculator and Excel Solution

Future Value: Multiple Cash Flows
 Example 5.2

- If you deposit \$100 in one year, $\$ 200$ in two years and $\$ 300$ in three years.
- How much will you have in three years at 7 percent interest?
- How much in five years if you don't add additional amounts?
- Year 1 CF: 2 N ; -100 PV; $7 \mathrm{I} / \mathrm{Y}$; CPT FV $=114.49$
- Year 2 CF: 1 N; -200 PV; $7 \mathrm{I} / Y ;$ CPT FV $=214.00$
- Year 3 CF: 0 N; -300 PV; $7 \mathrm{I} / Y$; CPT FV $=300.00$
- Total FV $\quad=628.49$
- Total $\mathrm{FV}_{5}=628.49$ * $(1.07)^{2}=719.56$

Future Value: Multiple Cash Flows Example 5.2

Rate Year	Nper	CF	FV	Function
1	2	-100	$\$ 114.49$	$=\mathrm{FV}(0.07,2,0,-100)$
2	1	-200	$\$ 214.00$	$=\mathrm{FV}(0.07,1,0,-200)$
3	0	-300	$\$ 300.00$	$=\mathrm{FV}(0.07,0,0,-300)$

Total FV at Year 3
Total FV at Year 5
$\$ 628.49$
$\$ 719.56=(628.49)^{*}(1.07)^{\wedge} 2$

5-9

- If the fund pays 9% annually, how much will you have in two years?

$$
\begin{aligned}
& \mathrm{FV}=\begin{array}{r}
\$ 500 \times(1.09)^{2}
\end{array}=\$ 594.05 \\
&+\$ 600 \times(1.09)=\$ 654.00 \\
&=\$ 1,248.05
\end{aligned}
$$

Example Continued

- How much will you have in 5 years if you make no further deposits?
- First way:
- FV = \$500(1.09) ${ }^{5}+\$ 600(1.09)^{4}=\$ 1,616.26$
- Second way - use value at year 2:
- $\mathrm{FV}=\$ 1,248.05(1.09)^{3}=\$ 1,616.26$

Calculator and Excel Solution

Future Value: Multiple Cash Flows Example 3 - Formula

- Suppose you plan to deposit $\$ 100$ into an account in one year and $\$ 300$ into the account in three years.
- How much will be in the account in five years if the interest rate is 8% ?

$$
\begin{gathered}
\mathrm{FV}=\$ 100(1.08)^{4}+\$ 300(1.08)^{2}=\$ 136.05+ \\
\$ 349.92=\$ 485.97 \\
\text { Calculator and Excel Solution }
\end{gathered}
$$

Example 3 Time Line

Present Value: Multiple Cash Flows Example 5.3

- You are offered an investment that will pay
- \$200 in year 1,
- $\$ 400$ the next year,
- $\$ 600$ the following year, and
- $\$ 800$ at the end of the $4^{\text {th }}$ year.
- You can earn 12 percent on similar investments.
-What is the most you should pay for this one?

Present Value: Multiple Cash Flows Example 5.3 - Formula

Find the PV of each cash flow and add them:

- Year 1 CF: \$200 / (1.12) ${ }^{1}=\$ 178.57$
- Year 2 CF: \$400/(1.12)² = \$318.88
- Year 3 CF: $\$ 600 /(1.12)^{3}=\$ 427.07$
- Year 4 CF: \$800 / (1.12) ${ }^{4}=\$ 508.41$
- Total PV
$=\overline{\$ 1,432.93}$

Calculator and Excel Solution

Example 5.3 Time Line

Multiple Uneven Cash Flows TI BAII + CF Worksheet

- Clear all:
- Press CF
- Then 2nd
- Then CE/C
- CF_{0} is displayed as 0.00
- Enter the Period 0 cash flow
- If an outflow, press +/- to change the sign
- To enter the figure in the cash flow register, press ENTER

TI BAII+: Uneven Cash Flows

- Press the down arrow to move to the next cash flow register
- Enter the cash flow amount, press

ENTER and the down arrow to move to the cash flow counter (Fnn)

- The default counter value is " 1 "
- To accept the value of " 1 ", press the down arrow again
- To change the counter, enter the correct count, press ENTER and then the down arrow

TI BAII+: Uneven Cash Flows

- Repeat for all cash flows, in order.
- To find NPV:
- Press NPV: I appears on the screen.
- Enter the interest rate, press

ENTER, and then the down arrow to display NPV.

- Press CPT.

TI BAII+: Uneven Cash Flows

Cash Flows:
CF0 $=0$
CF1 $=$
CF2 $=$
CF3 $=$
CF4 $=$

Present Value: Multiple Cash Flows Another Example - Formula Solution

- You are considering an investment that will pay you $\$ 1,000$ in one year, $\$ 2,000$ in two years and $\$ 3,000$ in three years.
- If you want to earn 10% on your money, how much would you be willing to pay?
- PV = \$1,000/(1.1) ${ }^{1}=\$ 909.09$
- $P V=\$ 2,000 /(1.1)^{2}=\$ 1,652.89$
- $P V=\$ 3,000 /(1.1)^{3}=\$ 2,253.94$
- PV
= \$4,815.92

Calculator and Excel Solution

Decisions, Decisions

- Your broker calls you and tells you that he has this great investment opportunity.
- If you invest $\$ 100$ today, you will receive $\$ 40$ in one year and $\$ 75$ in two years.
- If you require a 15% return on investments of this risk, should you take the investment?
- No - the broker is charging more than you would be willing to pay.

Use cash flow keys:	
	$2^{\text {nd }}$ CE/C
CFO	0 ENTER
C01	40 ENTER
F01	1 ENTER
C02	75 ENTER
F02	1 ENTER
	NPV
1	15 ENTER
01.49	D

91.49

Saving For Retirement

- You are offered the opportunity to put some money away for retirement. You will receive five annual payments of $\$ 25,000$ each beginning in 40 years.

How much would you be willing to invest today if you desire an interest rate of 12% ?

\section*{Saving For Retirement Time Line

Notice that the year 0 cash flow $=0\left(\mathrm{CF}_{0}=0\right)$

Cash flows years 1-39 = 0
Cash flows years $40-44=\mathbf{2 5 , 0 0 0}$
(C01 = 0; F01 = 39)
(C02 = 25,000; F02 = 5)

Quick Quiz: Part 1

- Suppose you are looking at the following possible cash flows:
- Year 1 CF = \$100;
- Years 2 and 3 CFs = $\$ 200$;
- Years 4 and 5 CFs = $\$ 300$.
- The required discount rate is 7%
- What is the value of the CFs at year 5?
- What is the value of the CFs today?

Calculator Solution

Quick Quiz: Part 1 - Excel

 Solution| | A | B | ¢ C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Chapter 5 - Quick Quiz 1 | | | | |
| 2 | | Rate | 7\% | | |
| 3 | Year | Nper | CF | PV | Formula |
| 4 | 1 | 1 | 100 | \$93.46 | =-PV(\$C\$2,A4,0,C4) |
| 5 | 2 | 2 | 200 | \$174.69 | $=-\mathrm{PV}(\$ \mathrm{C} \$ 2, \mathrm{~A} 5,0, \mathrm{C} 5)$ |
| 6 | 3 | 3 | 200 | \$163.26 | $=-\mathrm{PV}(\$ \mathrm{C} \$ 2, \mathrm{~A} 6,0, \mathrm{C} 6)$ |
| 7 | 4 | 4 | 300 | \$228.87 | $=-\mathrm{PV}(\$ \mathrm{C} \$ 2, A 7,0, \mathrm{C} 7)$ |
| 8 | 5 | 5 | 300 | \$213.90 | $=-\mathrm{PV}(\$ \mathrm{C} \$ 2, \mathrm{A8,0,C8)}$ |
| 9 | | | Total PV | \$874.17 | $=$ SUM (C4:C8) |
| 10 | Year | Nper | CF | FV | Year |
| 12 | 1 | 4 | 100 | \$131.08 | =-FV(\$C\$2,B12,0,C12) |
| 13 | 2 | 3 | 200 | \$245.01 | $=-\mathrm{FV}(\$ \mathrm{C} \$ 2, \mathrm{~B} 13,0, \mathrm{C} 13)$ |
| 14 | 3 | 2 | 200 | \$228.98 | $=-\mathrm{FV}(\$ \mathrm{C}$ 2, $\mathrm{B} 14,0, \mathrm{C} 14)$ |
| 15 | 4 | 1 | 300 | \$321.00 | $=-\mathrm{FV}(\$ \mathrm{C}$ 2, $\mathrm{B} 15,0, \mathrm{C} 15)$ |
| 16 | 5 | 0 | 300 | \$300.00 | $=-\mathrm{FV}(\$ \mathrm{C} \$ 2, \mathrm{~B} 16,0, \mathrm{C} 16)$ |
| 17 | | | Total FV | \$1,226.07 | =SUM(C12:C16) |

Chapter 5 - Quick Quiz: Part 1

Annuities and Perpetuities

- Annuity - finite series of equal payments that occur at regular intervals
- If the first payment occurs at the end of the period, it is called an ordinary annuity
- If the first payment occurs at the beginning of the period, it is called an annuity due
- Perpetuity - infinite series of equal payments.

Annuities and Perpetuities Basic Formulas

- Perpetuity: PV = PMT / r
- Annuities:

$$
\begin{aligned}
& P V=P M T\left[\frac{1-\frac{1}{(1+r)^{t}}}{r}\right] \\
& F V=P M T\left[\frac{(1+r)^{t}-1}{r}\right]
\end{aligned}
$$

Annuities and the Calculator

- The PMT key on the calculator is used for the equal payment
- The sign convention still holds
- Ordinary annuity versus Annuity due
- Switch your calculator between the two types (next slide)
- If you see "BGN" or "Begin" in the display of your calculator, you have it set for an annuity due
- Most problems are ordinary annuities

TI BAII+:

Set Annuity Time Value Parameters

- Set END for an ordinary annuity or BGN for an annuity due
- Press $2^{\text {nd }}$ BGN (above PMT)
- This is a toggle switch. The default is END.
- To change to BEGIN, press $\mathbf{2}^{\text {nd }}$ SET (above ENTER) to go back and forth.

Excel Spreadsheet Functions

- FV(Rate,Nper,Pmt,PV,0/1)
- PV(Rate,Nper,Pmt,FV,0/1)
- RATE(Nper,Pmt,PV,FV,0/1)
- NPER(Rate,Pmt,PV,FV,0/1)
- PMT(Rate,Nper,PV,FV,0/1)

- Inside parens: (RATE,NPER,PMT,PV,FV,0/1)
- "0/1" Ordinary annuity = 0 (default; no entry needed)

Annuity Due = 1 (must be entered)

Important Points to Remember

- Interest rate and time period must match!
- Annual periods \Rightarrow annual rate
- Monthly periods \Rightarrow monthly rate
- The Sign Convention
- Cash inflows are positive
- Cash outflows are negative

Sign Convention Example

5	N
10	I / Y
-100	PV
$\mathbf{2 0}$	PMT
CPT	$\mathrm{FV}=\$ 38.95$
Implies you deposited	
\$100 today and plan to	
WITHDRAW \$20 a year	
for 5 years	

+CF = Cash INFLOW to YOU

5	N
10	I / Y
-100	PV
-20	PMT
CPT FV = \$283.15	
Implies you deposited	
\$100 today and plan to	
ADD \$20 a year for 5	
years	
-CF = Cash ouTfLow from you	

-CF = Cash OUTFLOW from you

Annuity

Example 5.5

- You can afford \$632 per month.
- Going rate $=1 \% /$ month for 48 months.
- How much can you borrow?
- You borrow money TODAY so you need to compute the present value.
$48 N$
$1 \quad / / Y$
632 PMT
0 FV
CPT PV $=23,999.54$
$(\$ 24,000)$

$$
\begin{array}{|l|}
\hline=P V(0.01,48,-632,0) \\
\hline
\end{array}
$$

P

- Suppose you win the Publishers Clearinghouse $\$ 10$ million sweepstakes.
- The money is paid in equal annual installments of $\$ 333,333.33$ over 30 years.
- If the appropriate discount rate is 5%, how much is the sweepstakes actually worth today?
- PV = \$333,333.33[1-1/1.0530] / 05 = \$5,124,150.29

Buying a House

- You are ready to buy a house and you have $\$ 20,000$ for a down payment and closing costs.
- Closing costs are estimated to be 4% of the loan value.
- You have an annual salary of $\$ 36,000$.
- The bank is willing to allow your monthly mortgage payment to be equal to 28% of your monthly income.
- The interest rate on the loan is 6% per year with monthly compounding (.5\% per month) for a 30 -year fixed rate loan.
- How much money will the bank loan you?
- How much can you offer for the house?

Buying a House (continued)

- Bank loan
- Monthly income $=36,000 / 12=3,000$
- Maximum payment $=.28(3,000)=840$
- 360 N (30*12)
- $0.5 \mathrm{I} / \mathrm{Y}$
- -840 PMT
=PV(.005,360,-840,0)
- CPT PV = 140,105
- Total Price
- Closing costs $=.04(140,105)=5,604$
- Down payment $=20,000-5604=14,396$
- Total Price $=140,105+14,396=154,501$

Quick Quiz: Part 2

- You know the payment amount for a loan and you want to know how much was borrowed.
- Do you compute a present value or a future value?

Quick Quiz: Part 2

- You want to receive $\$ 5,000$ per month in retirement. If you can earn $.75 \%$ per month and you expect to need the income for 25 years, how much do you need to have in your account at retirement?
- 300 N Months
- $0.75 \mathrm{I} / \mathrm{Y}$ Monthly rate
- 5000 PMT - Monthly Payment
- 0 FV
- CPT PV = -595,808.11
=PV(0.0075,300,5000,0)

Finding the Payment

- Suppose you want to borrow \$20,000 for a new car.
- You can borrow at 8\% per year, compounded monthly (8/12 = .66667\%
4(12) $=48 \mathrm{~N}$ $0.66667 \mathrm{I} / \mathrm{Y}$ 20,000 PV 0 FV
CPT PMT = -488.26 per month).
- If you take a 4 year loan, what is your monthly payment? =PMT(0.006667,48,20000,0)

Example 5.6

- $\$ 1,000$ due on credit card
- Payment = \$20 month minimum
- Rate = 1.5\% per month
- The sign convention matters!!!

| 1.5 I/Y
 1000 PV
 -20 PMT
 0 FV
 CPT N
 $=93.111$ months
 $=7.75$ years |
| :--- | :--- |

Finding the Number of Payments

Another Example

- Suppose you borrow $\$ 2,000$ at 5% and you are going to make annual payments of $\$ 734.42$. How long before you pay off the loan?

5	I/Y
2000	PV
-734.42	PMT
0	FV
CPT $N=3$ years	

=NPER(0.05,-734.42,2000,0)

Finding the Rate

- Suppose you borrow \$10,000 from your parents to buy a car. You agree to pay $\$ 207.58$ per month for 60 months. What is the monthly interest rate?

60	N
10000	PV
-207.58	PMT
0	FV
CPT I/Y	= 0.75\%
	per month

$$
=\text { RATE(60,-207.58,10000,0) }
$$

Quick Quiz: Part 3

- You want to receive $\$ 5,000$ per month for the next 5 years. How much would you need to deposit today if you can earn . 75% per month?

60	N (months)	
0.75	I/Y	
5000	PMT	
0	FV	
CPT PV $=-240866.87$		

Quick Quiz: Part 3

- You want to receive $\$ 5,000$ per month for the next 5 years.
- What monthly rate would you need to earn if you only have $\$ 200,000$ to deposit?

60 N	
-200000 PV	-RATE(60,5000,-200000,0)
$\begin{array}{\|cc} 5000 & \text { PMT } \\ 0 & \text { FV } \end{array}$	
CPT $I / Y=1.4395 \%$ per month	

Quick Quiz: Part 3

- Suppose you have $\$ 200,000$ to deposit and can earn .75\% per month.
- How many months could you receive the \$5,000 payment?

0.75	I/Y
-200000	PV
5000	PMT
0	FV
CPT N	$=47.73$ months
≈ 4 years	

=NPER(0.0075,5000,-200000,0)

Quick Quiz: Part 3

- Suppose you have $\$ 200,000$ to deposit and can earn .75\% per month.
- How much could you receive every month for 5 years?

60	N	=PMT(0.0075,60,-200000,0)
0.75	I/Y	
-200000	PV	
0	FV	
CPT PMT	$=4151.67$	

Future Values for Annuities

- Suppose you begin saving for your retirement by depositing \$2,000 per year in an IRA. If the interest rate is 7.5%, how much will you have in 40 years?

40	N
7.5	I / Y
0	PV
-2000	PMT
CPT	FV $=454513.04$

=FV(0.075,40,-2000,0)

$$
\begin{aligned}
& F V=P M T\left[\frac{(1+r)^{t}-1}{r}\right] \\
& F V=2000\left[\frac{(1.075)^{40}-1}{.075}\right]=454,513.04
\end{aligned}
$$

Annuity Due

- You are saving for a new house and you put \$10,000 per year in an account paying 8%. The first payment is made today. How much will you have at the end of 3 years?

$2^{\text {nd }}$ BGN $2^{\text {nd }}$ SET	$=F V(0.08,3,-10000,0,1)$
3 N	
8 I/Y	$F V_{A D}=P M T\left[\frac{(1+r)^{t}-1}{r}\right](1+r)$
0 PV	$F V_{A D}=10000\left[\frac{(1.08)^{3}-1}{08}\right](1.08)=35,061.12$
-10000 PMT	${ }^{2}{ }^{\text {d }}$
CPT FV = 35061.12	
$2^{\text {nd }}$ BGN $2^{\text {nd }}$ SET	- Reset to END

Table 5.2

I. Symbols

tABLE 5.2
PV = Present value, what future cash flows are worth today
$\mathrm{FV}_{t}=$ Future value, what cash flows are worth in the future at Time t
r = Interest rate, rate of return, or discount rate per period-typically, but not always, one year
$t=$ Number of periods-typically, but not always, the number of years $C=$ Cash amount
II. Future value of C invested per period for t periods at r percent per period $\mathrm{FV}_{t}=C \times\left[(1+r)^{t}-1\right] / r$
A series of identical cash flows paid for a set number of periods is called an annuity, and the term $\left[(1+r)^{t}-1\right] / r$ is called the annuity future value factor.
III. Present value of C per period for t periods at r percent per period PV $=C \times\{1-[1 /(1+r)]\} / r$
The term $\left\{1-\left[1 /(1+r)^{\top}\right]\right\} / r$ is called the annuity present value factor.
IV. Present value of a perpetulty of C per period
$\mathrm{PV}=\mathrm{C} / \mathrm{r}$
A perpetuity has the same cash flow every period forever.

Perpetuity

Example 5.7

- Perpetuity formula: PV = PMT / r
- Current required return:
$-40=1 / r$
$-r=.025$ or 2.5% per quarter
- Dividend for new preferred:
- $100=$ PMT / 025
- PMT = 2.50 per quarter

Quick Quiz: Part 4 (1 of 3)

- You want to have $\$ 1$ million to use for retirement in 35 years. If you can earn 1% per month, how much do you need to deposit on a monthly basis if the first payment is made in one month?

420 N	Ordinary Annuity
1 I/Y	=PMT(0.01,420,0,1000000)
0 PV	=PMT(0.01,420,0,100000)
1000000 FV	
CPT PMT $=-155.50$	

Quick Quiz: Part 4 (2 of 3)

- You want to have $\$ 1$ million to use for retirement in 35 years. If you can earn 1% per month, how much do you need to deposit on a monthly basis if the first payment is made today?

$2^{\text {nd }}$ BGN $2^{\text {nd }}$ SET	Annuity Due
420 N	
1 I / \mathbf{Y}	=PMT(0.01,420,0,1000000,1)
$0 \quad \text { PV }$	
1000000 FV	
CPT PMT = -153.96	
$2^{\text {nd }} B G N 2^{\text {nd }}$ SET	

Quick Quiz: Part 4 (3 of 3)

- You are considering preferred stock that pays a quarterly dividend of $\$ 1.50$. If your desired return is 3% per quarter, how much would you be willing to pay?

$$
\$ 1.50 / 0.03=\$ 50
$$

Interest Rates

- Effective Annual Rate (EAR)

- The interest rate expressed as if it were compounded once per year.
- Used to compare two alternative investments with different compounding periods

- Annual Percentage Rate (APR) "Nominal"

- The annual rate quoted by law
- APR = periodic rate X number of periods per year
- Periodic rate $=$ APR $/$ periods per year

Things to Remember

- You ALWAYS need to make sure that the interest rate and the time period match.
- Annual periods \rightarrow annual rate.
- Monthly periods \rightarrow monthly rate.
- If you have an APR based on monthly compounding, you have to use monthly periods for lump sums or adjust the interest rate accordingly.

EAR Formula

$$
\mathrm{EAR}=\left[1+\frac{\mathrm{APR}}{\mathrm{~m}}\right]^{\mathrm{m}}-1
$$

APR = the quoted rate
m = number of compounds per year

EAR and APR in TI BA II+

$2^{\text {nd }}$ ICONV
$2^{\text {nd }} \mathbf{C E} / C$ (to clear the memory)

- 3 fields in worksheet:
- NOM (Nominal rate-APR)
- EFF (Effective annual rate)
- C/Y (Compounding periods/yr)
- To compute EFF, enter the NOM and C/Y values, move to EFF and press CPT
- To compute NOM, enter the EFF and C/Y values, move to NOM and press CPT

EAR and NOM in Excel

- 2 Functions:
=EFFECT(Nom, Nper)
=NOMINAL(Eff, Nper)
- All rates entered as decimals
- Nper = number of compounding periods per year

TOOLS ... Add-Ins ... ANALYSIS TOOLPAK

Decisions, Decisions

- Which savings accounts should you choose:
-5.25% with daily compounding.
- 5.30% with semiannual compounding.
- First account:
- $E A R=(1+.0525 / 365)^{365}-1=5.39 \%$
- ICONV: NOM=5.25; C/Y=365 EFF=5.3899
- Excel: =EFFECT(0.525,365) = 5.39\%
- Second account:
- $\operatorname{EAR}=(1+.053 / 2)^{2}-1$
= 5.37\%
- ICONV: NOM=5.3; C/Y=2

EFF=5.3702

- Excel: =EFFECT(0.53,2) = 5.37\%

Computing APRs

- What is the APR if the monthly rate is $.5 \%$?
- $.5 \%(12)=6 \%$
- What is the APR if the semiannual rate is $.5 \%$?
- $.5 \%(2)=1 \%$
- What is the monthly rate if the APR is 12% with monthly compounding?
- $12 \% / 12$ = 1%
- Can you divide the above APR by 2 to get the semiannual rate?
- NO. You need an APR based on semiannual compounding to find the semiannual rate.

Computing EAR and APR

- Suppose you can earn 1% per month on $\$ 1$ invested today.
- What is the APR? $1(12)=12 \%$
- How much are you effectively earning?
- $\mathrm{FV}=1(1.01)^{12}=1.1268$
- Rate $=(1.1268-1) / 1=.1268=12.68 \%$

INCONV:	NOM $=12$ C/Y EFF	$=12$

$=\operatorname{EFFECT}(0.12,12)$

Computing EAR and APR

- Suppose if you put it in another account, you earn 3\% per quarter.
- What is the APR? 3(4) = 12\%
- How much are you effectively earning?
- $\mathrm{FV}=1(1.03)^{4}=1.1255$
- Rate $=(1.1255-1) / 1=.1255=12.55 \%$

ICONV:	NOM $=12$ C/Y $=4$ EFF $=12.5509$	
EEFFECT(0.12,4)		

Computing APRs from EARs

$A P R=m\left[(1+E A R)^{1 / m}-1\right]$
$\mathrm{M}=$ number of compounding periods per year

APR - Example

- Suppose you want to earn an effective rate of 12% and you are looking at an account that compounds on a monthly basis. What APR must they pay?

$$
\begin{aligned}
&\left.\mathrm{APR}=12 \mid(1+.12)^{1 / 12}-1\right]=.1138655 \text { or } 11.39 \% \\
& \text { ICONV: } \quad \begin{array}{l}
\text { EFF }
\end{array}=12 \\
& \mathrm{C} / \mathrm{Y}=12 \\
& \text { NOM }=11.3866
\end{aligned}
$$

Excel: =NOMINAL(0.12,12)

Computing Payments with APRs

- Suppose you want to buy a new computer.
- The store is willing to allow you to make monthly payments.
- The entire computer system costs \$3,500.
- The loan period is for 2 years.
- The interest rate is 16.9% with monthly compounding.
- What is your monthly payment?

$2(12)$	$=24$	N
$16.9 / 12=1.40833$		I/Y
3500		PV
0		FV
CPT PMT $=-172.88$		

Future Values with Monthly Compounding

- Suppose you deposit $\$ 50$ a month into an account that has an APR of 9\%, based on monthly compounding. How much will you have in the account in 35 years?

Present Value with Daily Compounding

- You need $\$ 15,000$ in 3 years for a new car. If you can deposit money into an account that pays an APR of 5.5% based on daily compounding, how much would you need to deposit?

1095	$\mathrm{~N}\left(3^{*} 365\right)$
015068493	$\mathrm{I} / \mathrm{Y}(5.5 / 365)$
	PMT
15,000	FV
CPT PV $=-12,718.56$	

$$
=P V(0.00015,1095,0,15000)
$$

Quick Quiz: Part 5

- What is the definition of an APR?
- What is the effective annual rate?
- Which rate should you use to compare alternative investments or loans?
- Which rate do you need to use in the time value of money calculations?
(Answers = Slide 5.56)

Pure Discount Loans

- Treasury bills are excellent examples of pure discount loans.
- Principal amount is repaid at some future date
- No periodic interest payments
- If a T-bill promises to repay $\$ 10,000$ in 12 months and the market interest rate is 7 percent, how much will the bill sell for in the market?
- 1 N; 10,000 FV; 7 I/Y; CPT PV = -9345.79
- =PV(.07,1,0,10000)

Amortized Loan with Fixed Payment: Example

- Each payment covers the interest expense plus reduces principal
- Consider a 4 -year loan with annual payments. The interest rate is 8% and the principal amount is $\$ 5000$.
- What is the annual payment?

$$
\bullet=P M T(0.08,4,5000,0)=1509.60
$$

- 4 N; 8 I/Y; 5000 PV, 0 FV, CPT PMT $=1509.60$

Amortized Loan with Fixed Payment: Example

Year	Beginning Balance		Total Payment Payment		Interest Paid		Principal Paid		Ending Balance	
1	\$	5,000.00	\$	1,509.60	\$	400.00	\$	1,109.60	\$	3,890.40
2	\$	3,890.40	\$	1,509.60	\$	311.23	\$	1,198.37	\$	2,692.03
3	\$	2,692.03	\$	1,509.60	\$	215.36	\$	1,294.24	\$	1,397.79
4	\$	1,397.79	\$	1,509.60	\$	111.82	\$	1,397.79	\$	
Totals			\$	6,038.40	\$	1,038.42	\$	5,000.00		

Interest Paid = Beginning Balance * Rate (8\%)
Principal Paid = Total Payment - Interest Paid
Ending Balance $\boldsymbol{=}$ Beginning Balance $\boldsymbol{-}$ Principal Paid

Quick Quiz: Part 6

-What is a pure discount loan?

- What is a good example of a pure discount loan? (Slide 5.72)
- What is an amortized loan?
- What is a good example of an amortized loan? (slide 5.73)

Example: Work the Web

- Several Web sites have calculators that will prepare amortization tables quickly
- One such site is Bankrate.com
- Click on this link, select "Calculators," "Mortgage Payment Calculator," and enter the following information:
- Loan amount = \$20,000
- Term = 10 years
- Interest rate = 7.625\%
- What is the monthly payment?
$\begin{aligned} & \text { Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written } \\ & \text { consent of McGraw-Hill Education. }\end{aligned} \quad 5-76$

FV Example 5.1
 Calculator Solution

Calculator Solution				PV	PMT	CPT FV
	Year	N	I/Y			
	0	3	8	-7000	0	8,817.98
	1	2	8	-4000	0	4,665.60
	2	1	8	-4000	0	4,320.00
	3					4,000.00
						21,803.58
Value at year 4:						
	Year	N	I/Y	PV	PMT	CPT FV
	4	1	8	-21,803.58	0	23,547.87

Return to Slideshow

FV Example 2 Calculator Solution

Calculator Solution						
						CPT
	Year	N	I/Y	PV	PMT	FV
	0	2	9	500	0	594.05
	1	1	9	600	0	654.00
						1,248.05
Value at year 4:						
						CPT
	Year	N	I/Y	PV	PMT	FV
	5	3	9	1,248.05	0	1,616.26
or						
						CPT
	Year	N	I/Y	PV	PMT	FV
	0	5	9	500	0	769.31
	1	4	9	600	0	846.95
						1,616.26
\square					Return to Slideshow	

FV Example 3
 Calculator and Excel Solution

Calculator Solution					CPT
Year	N	I/Y	PV	PMT	FV
1	4	8	-100	0	136.05
3	2	8	-300	0	349.92
					485.97
Excel Solution					
Year	Nper	Rate	PV	PMT	FV
1	4	0.08	-100	0	136.05
3	2	0.08	-300	0	349.92
					485.97
=FV(Rate, Nper,PMT,PV)					

Return to Slideshow

Multiple Cash Flows: Example 5.3 Calculator Solution

					CPT
Year	N	I/Y	FV	PMT	PV
1	1	12	200	0	178.57
2	2	12	400	0	318.88
3	3	12	600	0	427.07
4	4	12	800	0	508.41
					1,432.93

Multiple Cash Flows: Example 5.3 Excel Solution

Excel Solution

Year	Nper	Rate	FV	PMT	PV
1	1	0.12	-200	0	178.57
2	2	0.12	-400	0	318.88
3	3	0.12	-600	0	427.07
4	4	0.12	-800	0	508.41
					$1,432.93$

=PV(Rate, Nper, PMT,FV)

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written

Multiple Cash Flows: PV Example Calculator \& Excel Solutions

Calculator Solution					CPT
Year	N	1/Y	FV	PMT	PV
1	1	10	-1000	0	909.09
2	2	10	-2000	0	1,652.89
3	3	10	-3000	0	2,253.94
					4,815.92
Excel Solution					
Year	Nper	Rate	FV	PMT	PV
1	1	0.10	-1000	0	909.09
2	2	0.10	-2000	0	1,652.89
3	3	0.10	-3000	0	2,253.94
					4,815.92
= PV(R	er,P	,FV)			
			$\begin{aligned} & \mathrm{Re} \\ & \mathrm{SI} \end{aligned}$		

Copyright ©(O2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written

Annuity - Sweepstakes Example

Sweepstakes Example

$$
\begin{array}{ccc}
& \text { N } & 30 \\
& \text { I/Y } & 5 \\
& \text { PMT } & \$ 333,333.33 \\
& \text { FV } & 0 \\
\text { CPT } & \text { PV } & \$(5,124,150.29) \\
= & & \\
& & \\
& & \\
& & (\$ 5,124,150.29)
\end{array}
$$

