

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Key Concepts and Skills

After studying this chapter, you should be able to:

- Determine the future value and present value of investments with multiple cash flows.
- Calculate loan payments, and find the interest rate on a loan.
- Describe how loans are amortized or paid off.
- Explain how interest rates are quoted (and misquoted).

Chapter Outline

- 5.1 Future and Present Values of Multiple Cash Flows
- 5.2 Valuing Level Cash Flows: Annuities and Perpetuities
- 5.3 Comparing Rates: The Effect of Compounding Periods
- 5.4 Loan Types and Loan Amortization

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-3

Multiple Cash Flows Computational Methods

- TVM Formulas
- Texas Instruments BA II+
 - PV/FV keys
 - Cash Flow Worksheet
 - Present Value only
- Excel Spreadsheet/Functions

Future Value: Multiple Cash Flows Example 5.1

- You think you will be able to deposit \$4,000 at the end of each of the next three years in a bank account paying 8 percent interest.
- You currently have \$7,000 in the account.
- How much will you have in 3 years?
- How much in 4 years?

Copyright © 2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written 5-5 consent of McGraw-Hill Education.

Future Value: Multiple Cash Flows Example 5.1 - Formulas

• Find the value at year 3 of each cash flow and add them together.

– Year 0: FV = \$7,000(1.08) ³	=\$ 8,817.98
– Year 1: FV = \$4,000(1.08) ²	=\$ 4,665.60
– Year 2: FV = \$4,000(1.08) ¹	=\$ 4,320.00
– Year 3: value	=\$ 4,000.00
 Total value in 3 years 	= \$21,803.58

- Total value in 3 years
- Value at year 4 = \$21,803.58(1.08)= \$23,547.87

Calculator and Excel Solution

Future Value: Multiple Cash Flows Example 5.2

- If you deposit \$100 in one year, \$200 in two years and \$300 in three years.
- How much will you have in three years at 7 percent interest?
- How much in five years if you don't add additional amounts?
 - Year 1 CF: 2 N; -100 PV; 7 I/Y; CPT FV = 114.49
 - Year 2 CF: 1 N; -200 PV; 7 I/Y; CPT FV = 214.00
 - Year 3 CF: 0 N; -300 PV; 7 I/Y; CPT FV = 300.00
 - Total FV₃ = 628.49
 - Total $FV_5 = 628.49 * (1.07)^2 = 719.56$

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-7

Future Value: Multiple Cash Flows Example 5.2

Rate	7%				
Year	Nper	CF	FV	Function	
1	2	-100	\$114.49	=FV(0.07,2,0,-100)	1158
2	1	-200	\$214.00	=FV(0.07,1,0,-200)	
3	0	-300	\$300.00	=FV(0.07,0,0,-300)	
Total F\	/ at Year	3	\$628.49		
Total FV at Year 3			\$719.56	=(628 49)*(1 07)^2	
rotarr v	at rour	0	φ <i>i</i> 10.00	-(020.10) (1.01) 2	V

Future Value: Multiple Cash Flows Example

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written

consent of McGraw-Hill Education.

- Suppose you invest \$500 in a mutual fund today and \$600 in one year.
- If the fund pays 9% annually, how much will you have in two years?

FV = $$500 \times (1.09)^2 = 594.05$ + $$600 \times (1.09) = 654.00$ = \$1,248.05

5-0

Example Continued

- How much will you have in 5 years if you make no further deposits?
- First way:
 - FV = \$500(1.09)⁵ + \$600(1.09)⁴ = \$1,616.26
- Second way use value at year 2:
 - FV = \$1,248.05(1.09)³ = \$1,616.26

Calculator and Excel Solution

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-11

Future Value: Multiple Cash Flows Example 3 - Formula

- Suppose you plan to deposit \$100 into an account in one year and \$300 into the account in three years.
- How much will be in the account in five years if the interest rate is 8%?

FV = \$100(1.08)⁴ + \$300(1.08)² = \$136.05 + \$349.92 = \$485.97

Calculator and Excel Solution

Present Value: Multiple Cash Flows Example 5.3

- You are offered an investment that will pay
 - \$200 in year 1,
 - \$400 the next year,
 - \$600 the following year, and
 - \$800 at the end of the 4th year.
 - You can earn 12 percent on similar investments.
 - What is the most you should pay for this one?

Present Value: Multiple Cash Flows Example 5.3 - Formula

Find the PV of each cash flow and add them:

- Year 1 CF: $200 / (1.12)^1 = 178.57$
- Year 2 CF: $400 / (1.12)^2 = 318.88$
- Year 3 CF: $(1.12)^3 =$ 427.07
- Year 4 CF: $$800 / (1.12)^4 = 508.41$
- Total PV = \$1,432.93

Multiple Uneven Cash Flows TI BAII + CF Worksheet

- Clear all:
 - Press CF
 - Then **2nd**
 - Then **CE/C**
- CF₀ is displayed as 0.00
- Enter the Period 0 cash flow
 - If an outflow, press +/- to change the sign
- To enter the figure in the cash flow register, press **ENTER**

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-17

TI BAII+: Uneven Cash Flows

- Press the down arrow to move to the next cash flow register
- Enter the cash flow amount, press
 ENTER and the down arrow to move to the cash flow counter (Fnn)
- The default counter value is "1"
 - To accept the value of "1", press the down arrow again
 - To change the counter, enter the correct count, press *ENTER* and then the down arrow

TI BAII+: Uneven Cash Flows

- Repeat for all cash flows, in order.
- To find NPV:
 - Press **NPV**: I appears on the screen.
 - Enter the interest rate, press
 ENTER, and then the down arrow to display NPV.
 - Press **CPT**.

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

TI BAII+: Uneven Cash Flows

Cash Flows:		<u>Display</u>	You Enter	
		_		CF 2 nd CE/C
CF0	=	0	C00	0 ENTER
	_	200	C01	200 ENTER
CEI	=	200	F01	1 ENTER
CE2	_	400	C02	400 ENTER
GFZ	-	400	F02	1 ENTER
CF3	_	600	C03	600 ENTER
015	-	000	F03	1 ENTER
CF4	=	800	C04	800 ENTER
•		000	F04	1 ENTER NPV
			1	12 ENTER down
			NPV	СРТ
<u>E</u> >	cel S	olution	1432.93	

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-20

5-19

Present Value: Multiple Cash Flows Another Example – Formula Solution

- You are considering an investment that will pay you \$1,000 in one year, \$2,000 in two years and \$3,000 in three years.
- If you want to earn 10% on your money, how much would you be willing to pay?

PV = \$1,000 / (1.1) ¹	=\$ 909.09
■ PV = \$2,000 / (1.1) ²	= \$1,652.89
■ PV = \$3,000 / (1.1) ³	= \$2,253.94
■ PV	= \$4.815.92

Calculator and Excel Solution

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-21

Decisions, **Decisions**

- Your broker calls you and tells you that he has this great investment opportunity.
- If you invest \$100 today, you will receive \$40 in one year and \$75 in two years.
- If you require a 15% return on investments of this risk, should you take the investment?

Use cash flow keys:							
CF							
	2 nd CE/C						
CF0	0 ENTER						
C01	40 ENTER						
F01	1 ENTER						
C02	75 ENTER						
F02	1 ENTER						
	NPV						
1	15 ENTER						
	DOWN CPT						
91.49							

 No – the broker is charging more than you would be willing to pay.

Saving For Retirement

 You are offered the opportunity to put some money away for retirement. You will receive five annual payments of \$25,000 each beginning in 40 years.

How much would you be willing to invest today if you desire an interest rate of 12%?

Quick Quiz: Part 1

- Suppose you are looking at the following possible cash flows:
 - Year 1 CF = \$100;
 - Years 2 and 3 CFs = \$200;
 - Years 4 and 5 CFs = \$300.
 - The required discount rate is 7%
- What is the value of the CFs at year 5?
- What is the value of the CFs today?

Calculator Solution

			So	lutio	n	
	A	В	c	D	E]
1	Chapt	er 5 - 0	Quick Quiz	1		
2		Rate	7%			
3	Year	Nper	CF	PV	Formula	
4	1	1	100	\$93.46	=-PV(\$C\$2,A4,0,C4)	1
5	2	2	200	\$174.69	=-PV(\$C\$2,A5,0,C5)	
6	3	3	200	\$163.26	=-PV(\$C\$2,A6,0,C6)	
7	4	4	300	\$228.87	=-PV(\$C\$2,A7,0,C7)	
8	5	5	300	\$213.90	=-PV(\$C\$2,A8,0,C8)	
9	1		Total PV	\$874.17	=SUM(C4:C8)	
10	1		-			
11	Year	Nper	CF	FV	Year	
12	1	4	100	\$131.08	=-FV(\$C\$2,B12,0,C12)]
13	2	3	200	\$245.01	=-FV(\$C\$2,B13,0,C13)	
14	3	2	200	\$228.98	=-FV(\$C\$2,B14,0,C14)	
15	4	1	300	\$321.00	=-FV(\$C\$2,B15,0,C15)	00000000
16	5	0	300	\$300.00	=-FV(\$C\$2,B16,0,C16)	
17	1		Total FV	\$1,226.07]=SUM(C12:C16)	

Chapter 5 – Quick Quiz: Part 1

Annuities and Perpetuities

- Annuity finite series of <u>equal</u> payments that occur at <u>regular</u> intervals
 - If the first payment occurs at the end of the period, it is called an <u>ordinary annuity</u>
 - If the first payment occurs at the beginning of the period, it is called an <u>annuity due</u>
- **Perpetuity** infinite series of equal payments.

Annuities and Perpetuities Basic Formulas

- Perpetuity: PV = PMT / r
- Annuities:

$$\mathbf{FV} = \mathbf{PMT}\left[\frac{(\mathbf{1}+\mathbf{r})^{t}-\mathbf{1}}{\mathbf{r}}\right]$$

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-29

Annuities and the Calculator

- The *PMT* key on the calculator is used for the equal payment
- The sign convention still holds
- Ordinary annuity versus Annuity due
 - Switch your calculator between the two types (next slide)
 - If you see "BGN" or "Begin" in the display of your calculator, you have it set for an annuity due

- Most problems are ordinary annuities Copyright © 2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-30

TI BAII+: Set Annuity Time Value Parameters

- Set END for an ordinary annuity or BGN for an annuity due
 - Press 2nd BGN (above PMT)
 - This is a toggle switch. The default is END.
 - To change to BEGIN, press 2nd SET (above ENTER) to go back and forth.

total amount that a series of future

OK Cancel

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-31

Excel Spreadsheet Functions

- FV(Rate,Nper,Pmt,PV,0/1)
- PV(Rate,Nper,Pmt,FV,0/1)
- RATE(Nper,Pmt,PV,FV,0/1)
- NPER(Rate,Pmt,PV,FV,0/1)
- PMT(Rate,Nper,PV,FV,0/1)
- Inside parens: (RATE,NPER,PMT,PV,FV,0/1)
- "0/1" Ordinary annuity = 0 (default; no entry needed)
 Annuity Due = 1 (must be entered)

Important Points to Remember

- Interest rate and time period must match!
 - Annual periods \Rightarrow annual rate
 - Monthly periods \Rightarrow monthly rate
- The Sign Convention
 - Cash inflows are positive
 - Cash outflows are negative

Copyright ©2020 McGraw-HillEducation. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-HillEducation. 5-33

Sign Convention Example

5 N	5 N	
10 I/Y	10 I/Y	
-100 PV	-100 PV	
20 PMT	-20 PMT	
CPT FV = \$38.95	CPT FV = \$283.15	
Implies you deposited \$100 today and plan to WITHDRAW \$20 a year for 5 years	Implies you deposited \$100 today and plan to ADD \$20 a year for 5 years	
+CF = Cash INFLOW to YOU	-CF = Cash OUTFLOW from you	References of the second

Annuity: Sweepstakes Example

- Suppose you win the Publishers Clearinghouse \$10 million sweepstakes.
- The money is paid in equal annual installments of \$333,333.33 over 30 years.
- If the appropriate discount rate is 5%, how much is the sweepstakes actually worth today?
 - PV = \$333,333.33[1 1/1.05³⁰] / .05 = \$5,124,150.29

Calculator and Excel Solution

Buying a House

- You are ready to buy a house and you have \$20,000 for a down payment and closing costs.
- Closing costs are estimated to be 4% of the loan value.
- You have an annual salary of \$36,000.
- The bank is willing to allow your monthly mortgage payment to be equal to 28% of your monthly income.
- The interest rate on the loan is 6% per year with monthly compounding (.5% per month) for a 30-year fixed rate loan.
- How much money will the bank loan you?
- How much can you offer for the house?

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-37

Buying a House (continued)

=PV(.005,360,-840,0)

- Bank loan
 - Monthly income = 36,000 / 12 = 3,000
 - Maximum payment = .28(3,000) = 840
 - 360 N (30*12)
 - 0.5 I/Y
 - -840 PMT

• Total Price

- Closing costs = .04(140,105) = 5,604
- Down payment = 20,000 5604 = 14,396
- Total Price = 140,105 + 14,396 = 154,501

Quick Quiz: Part 2

- You know the payment amount for a loan and you want to know how much was borrowed.
 - Do you compute a present value or a future value?

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-39

Quick Quiz: Part 2

• You want to receive \$5,000 per month in retirement. If you can earn .75% per month and you expect to need the income for 25 years, how much do you need to have in your account at retirement?

Finding the Number of Payments Example 5.6

- \$1,000 due on credit card
- Payment = \$20 month minimum
- Rate = 1.5% per month
- The sign convention matters!!!

Finding the Number of Payments Another Example

 Suppose you borrow \$2,000 at 5% and you are going to make annual payments of \$734.42. How long before you pay off the loan?

5 I/Y 2000 PV -734.42 PMT		=NPER(0.05,-734.42,2000,0)
0 FV CPT N = 3 years	6	

Copyright ©2020 McGraw-HillEducation. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-43

 Suppose you borrow \$10,000 from your parents to buy a car. You agree to pay \$207.58 per month for 60 months. What is the monthly interest rate?

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-45

Quick Quiz: Part 3

- You want to receive \$5,000 per month for the next 5 years.
- What monthly rate would you need to earn if you only have \$200,000 to deposit?

Quick Quiz: Part 3

- Suppose you have \$200,000 to deposit and can earn .75% per month.
 - How much could you receive every month for 5 years?

• Suppose you begin saving for your retirement by depositing \$2,000 per year in an IRA. If the interest rate is 7.5%, how much will you have in 40 years?

Table 5.2

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written 5-51 consent of McGraw-Hill Education.

Example: Work the Web

- Another online financial calculator can be found at Calculatoredge.com.
- Click on this link, select "Finance" calculator and "Annuity Payments" and work the following example:
 - How much could you withdraw each year if you have \$2,500,000, earn 8% and make annual withdrawals for 35 years?

TABLE 5.2

Summary of annuity and perpetuity calculations

Perpetuity Example 5.7

- Perpetuity formula: PV = PMT / r
- Current required return:
 - 40 = 1 / r
 - r = .025 or 2.5% per quarter
- Dividend for new preferred:
 - -100 = PMT / .025
 - PMT = 2.50 per quarter

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-53

Quick Quiz: Part 4 (1 of 3)

 You want to have \$1 million to use for retirement in 35 years. If you can earn 1% per month, how much do you need to deposit on a monthly basis if the first payment is made in one month?

Quick Quiz: Part 4 (3 of 3)

 You are considering preferred stock that pays a quarterly dividend of \$1.50. If your desired return is 3% per quarter, how much would you be willing to pay?

Interest Rates

- Effective Annual Rate (EAR)
 - The interest rate expressed as if it were compounded once per year.
 - Used to compare two alternative investments with different compounding periods
- Annual Percentage Rate (APR) "Nominal"
 - The annual rate quoted by law
 - APR = periodic rate X number of periods per year
 - Periodic rate = APR / periods per year

Return to

Copyright © 2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written 5-57 consent of McGraw-Hill Education.

Things to Remember

- You ALWAYS need to make sure that the interest rate and the time period match.
 - Annual periods → annual rate.
 - Monthly periods \rightarrow monthly rate.
- If you have an APR based on monthly compounding, you have to use monthly periods for lump sums or adjust the interest rate accordingly.

EAR Formula

$$\mathsf{EAR} = \left[1 + \frac{\mathsf{APR}}{\mathsf{m}}\right]^{\mathsf{m}} - 1$$

APR = the quoted rate m = number of compounds per year

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-59

EAR and APR in TI BA II+

2nd ICONV

2nd CE/C (to clear the memory)

- 3 fields in worksheet:
 - NOM (Nominal rate-APR)
 - EFF (Effective annual rate)
 - C/Y (Compounding periods/yr)
 - To compute EFF, enter the NOM and C/Y values, move to EFF and press CPT
 - To compute NOM, enter the EFF and C/Y values, move to NOM and press CPT

EAR and NOM in Excel

• 2 Functions:

=EFFECT(Nom, Nper) =NOMINAL(Eff, Nper)

- All rates entered as decimals
- Nper = number of compounding periods per year

TOOLS ... Add-Ins ... ANALYSIS TOOLPAK

Copyright ©2020 McGraw-HillEducation. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-HillEducation. 5-61

Decisions, Decisions

- Which savings accounts should you choose:
 - 5.25% with daily compounding.
 - 5.30% with semiannual compounding.
- First account:
 - EAR = (1 + .0525/365)³⁶⁵ 1 = **5.39%**
 - ICONV: NOM=5.25; C/Y=365 EFF=5.3899
 - Excel: =EFFECT(0.525,365) = 5.39%
- Second account:

• EAR = $(1 + .053/2)^2 - 1$	= 5.37%
------------------------------	---------

- ICONV: NOM=5.3; C/Y=2 EFF=5.3702
- Excel: =EFFECT(0.53,2) = 5.37%

Computing APRs

- What is the APR if the monthly rate is .5%?
 - .5%(12) = 6%
- What is the APR if the semiannual rate is .5%?
 - .5%(2) = 1%
- What is the monthly rate if the APR is 12% with monthly compounding?
 - 12% / 12 = 1%
 - Can you divide the above APR by 2 to get the semiannual rate?
 - NO. You need an APR based on semiannual compounding to find the semiannual rate.

- Suppose you can earn 1% per month on \$1 invested today.
 - What is the APR? 1(12) = 12%
 - How much are you effectively earning?
 - FV = 1(1.01)¹² = 1.1268
 - Rate = (1.1268 1) / 1 = .1268 = 12.68%

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-64

- Suppose if you put it in another account, you earn 3% per quarter.
 - What is the APR? 3(4) = 12%
 - How much are you effectively earning?
 - FV = 1(1.03)⁴ = 1.1255
 - Rate = (1.1255 1) / 1 = .1255 = 12.55%

ICONV: NOM = 12 C/Y = 4 EFF = 12.5509 =EFFECT(0.12,4)

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-65

Computing APRs from EARs

M = number of compounding periods per year

APR - Example

 Suppose you want to earn an effective rate of 12% and you are looking at an account that compounds on a monthly basis. What APR must they pay?

APR = $12[(1+.12)^{1/12}-1] = .1138655$ or 11.39%ICONV: EFF = 12 C/Y = 12 NOM = 11.3866Excel: =NOMINAL(0.12,12)

Copyright ©2020 McGraw-HillEducation. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-HillEducation. 5-67

Computing Payments with APRs

- Suppose you want to buy a new computer.
- The store is willing to allow you to make monthly payments.

consent of McGraw-Hill Education.

- The entire computer system costs \$3,500.
- The loan period is for 2 years.
- The interest rate is 16.9% with monthly compounding.
- What is your monthly payment?

5-68

1-34

Future Values with Monthly Compounding

 Suppose you deposit \$50 a month into an account that has an APR of 9%, based on monthly compounding. How much will you have in the account in 35 years?

	420	Ν	(35*12)	=FV(0.0075,420,-50,0)	
	0.75	I/Y	(9/12)		
	0	PV			1
	-50	PMT			
CI	PT FV =	147,0	89.22		

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-69

Present Value with Daily Compounding

• You need \$15,000 in 3 years for a new car. If you can deposit money into an account that pays an APR of 5.5% based on daily compounding, how much would you need to deposit?

=PV(0.00015,1095,0,15000)								
CPT PV = -12,	718.56							
15,000	FV							
þ	PMT							
015068493	I/Y (5.5/365)							
1095	N (3*365)							

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-70

Quick Quiz: Part 5

- What is the definition of an APR?
- What is the effective annual rate?
- Which rate should you use to compare alternative investments or loans?
- Which rate do you need to use in the time value of money calculations?

(Answers = Slide 5.56)

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written

Pure Discount Loans

- Treasury bills are excellent examples of pure discount loans.
 - Principal amount is repaid at some future date
 - No periodic interest payments
- If a T-bill promises to repay \$10,000 in 12 months and the market interest rate is 7 percent, how much will the bill sell for in the market?
 - 1 N; 10,000 FV; 7 I/Y; CPT PV = -9345.79
 - =PV(.07,1,0,10000)

5-72

Amortized Loan with Fixed Payment: Example

- Each payment covers the interest expense plus reduces principal
- Consider a 4-year loan with annual payments. The interest rate is 8% and the principal amount is \$5000.
 - What is the annual payment?
 - 5,000 = PMT[1−1/1.08⁴]/.08 → PMT = 1,509.60
 - =PMT(0.08,4,5000,0) = 1509.60
 - 4 N; 8 I/Y; 5000 PV, 0 FV, CPT PMT = 1509.60

Copyright © 2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-73

Amortized Loan with Fixed Payment: Example

	B	eginning	Tota	al Payment		Interest	P	rincipal	E	nding
Year		Balance	F	Payment		Paid		Paid		Balance
1	\$	5,000.00	\$	1,509.60	\$	400.00	\$	1,109.60	\$	3,890.40
2	\$	3,890.40	\$	1,509.60	\$	311.23	\$	1,198.37	\$	2,692.03
3	\$	2,692.03	\$	1,509.60	\$	215.36	\$	1,294.24	\$	1,397.79
4	\$	1,397.79	\$	1,509.60	\$	111.82	\$	1,397.79	\$	-
Totals			\$	6,038.40	\$	1,038.42	\$	5,000.00		

Interest Paid = Beginning Balance * Rate (8%) Principal Paid = Total Payment – Interest Paid Ending Balance = Beginning Balance – Principal Paid

Quick Quiz: Part 6

- What is a pure discount loan?
 - What is a good example of a pure discount loan? (<u>Slide 5.72</u>)
- What is an amortized loan?
 - What is a good example of an amortized loan? (<u>Slide 5.73</u>)

Copyright ©2020 McGraw-HillEducation. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-75

Example: Work the Web

- Several Web sites have calculators that will prepare amortization tables quickly
- One such site is Bankrate.com
- Click <u>on this link</u>, select "Calculators," "Mortgage Payment Calculator," and enter the following information:
 - Loan amount = \$20,000
 - Term = 10 years
 - Interest rate = 7.625%
 - What is the monthly payment? Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

5-76

FV Example 5.1 Calculator Solution

Calc	ulator S	Solutio	on			
	Year	Ν	I/Y	PV	PMT	CPT FV
	0	3	8	-7000	0	8,817.98
	1	2	8	-4000	0	4,665.60
	2	1	8	-4000	0	4,320.00
	3					4,000.00
						21,803.58
	Value	at yea	r 4:			
	Year	Ν	I/Y	PV 📈	РМТ	CPT FV
	4	1	8	-21,803.58	0	23,547.87

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-77

FV Example 5.1 Excel Solution

Exce	el Solu	tion				
	Year	Nper	Rate	PV	PMT	FV
	0	3	0.08	-7000	0	8,817.98
	1	2	0.08	-4000	0	4,665.60
	2	1	0.08	-4000	0	4,320.00
	3					4,000.00
						21,803.58
	Value	at yea	r 4 :			
	Year	Nper	Rate	PV 🖌	РМТ	FV
	4	1	0.08	-21,803.58	0	23,547.87
		=	FV(Ra	te, Nper,P	P MT,P Return Slidesl	V) to how
Copyright @	02020 McGraw	v-Hill Education.	All rights reserve onsent of McGr	ed. No reproduction or distr aw-Hill Education.	ibution without t	he prior written 5-78

FV Example 2 Calculator Solution

Calcu	lator Solu	Ition				
						CPT
	Year	Ν	I/Y	PV	PMT	FV
	0	2	9	500	0	594.05
	1	1	9	600	0	654.00
					_	1,248.05
	Value at	year 4:				CPT
	Year	Ν	I/Y	PV	PMT	FV
	5	3	9	1,248.05	0	1,616.26
or						СРТ
	Year	Ν	I/Y	PV	PMT	FV
	0	5	9	500	0	769.31
	1	4	9	600	0	846.95
						1,616.26
					Returr Slides	n to how

		FV	Ехаі	mple 2			
		Exc	el So	olution	ר		Star
		LAC		Jiucioi	1		
vcol (Solution						
ACCI	Year	Nper	Rate	PV	РМТ	FV	1
	0	2	0.09	-500	0	594.05	
	1	1	0.09	-600	0	654.00	
						1,248.05	
	Value a	t year 4:					
	Year	Nper	Rate	PV 📈	РМТ	FV	
	5	3	0.09	-1,248.05	0	1,616.26	
		=F\	/(Rate,	Nper,PM7	,PV)		V
			•				; (
							1
			∕∟	Return	to 🚺	X	

FV Example 3 Calculator and Excel Solution

Calcula	ator Solut	ion				СРТ
	Year	N	I/Y	PV	PMT	FV
	1	4	8	-100	0	136.05
	3	2	8	-300	0	349.92
						485.97
Excel S	Solution					
	Year	Nper	Rate	PV	PMT	FV
			· · ·			
	1	4	0.08	-100	0	136.05
	1	4 2	0.08 0.08	-100 -300	0	136.05 349.92
	1 3	4 2	0.08 0.08	-100 -300	0	136.05 349.92 485.97
	1 3	4 2 =F	0.08 0.08 V(Rate, I	-100 -300 Nper,PM	0 0 T,PV)	136.05 349.92 485.97

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 5-81

Multiple Cash Flows: Example 5.3 Calculator Solution

					СРТ
Year	Ν	I/Y	FV	PMT	PV
1	1	12	200	0	178.57
2	2	12	400	0	318.88
3	3	12	600	0	427.07
4	4	12	800	0	508.41
					1,432.93

Multiple Cash Flows: Example 5.3 Excel Solution

Excel Solution

Year	Nper	Rate	FV	PMT	PV
1	1	0.12	-200	0	178.57
2	2	0.12	-400	0	318.88
3	3	0.12	-600	0	427.07
4	4	0.12	-800	0	508.41
					1 432 93

=PV(Rate, Nper, PMT, FV)

Excel: PV of Multiple Uneven CFs

Rate		12%		
Period	Ca	sh Flow	Present Value	Formula
1	\$	200.00	(\$178.57)	=PV(\$B\$1,A3,0,B3)
2	\$	400.00	(\$318.88)	=PV(\$B\$1,A4,0,B4)
3	\$	600.00	(\$427.07)	=PV(\$B\$1,A5,0,B5)
4	\$	800.00	(\$508.41)	=PV(\$B\$1,A6,0,B6)
	Tot	al PV =	(\$1,432.93) (\$1,432.93)	=SUM(C3:C6) =-NPV(B1,B3:B6)

The functions require a PMT = 0.

Multiple Cash Flows: PV Example Calculator & Excel Solutions

Calculate	or Solution					СРТ
	Year	N	I/Y	FV	PMT	PV
	1	1	10	-1000	0	909.09
	2	2	10	-2000	0	1,652.89
	3	3	10	-3000	0	2,253.94
						4,815.92
Excel So	lution					
	Year	Nper	Rate	FV	РМТ	PV
	1	1	0.10	-1000	0	909.09
	2	2	0.10	-2000	0	1,652.89
	3	3	0.10	-3000	0	2,253.94
						4,815.92
	=PV(Rate	, Nper,PN	IT,FV)			
	•	· - ·	¢	Retu Slide	rn to eshow	X

5-85 consent of McGraw-Hill Education.

Quick	Quiz:	Part	1
-------	-------	------	---

scount Rate	7%	Calculator:						
Year	CF	Keystro	okes					
1	100	CF	2nd	ClrWork				
2	200	CF0	0	ENTER				
3	200	C01	100	ENTER	F01	1	ENTER	
4	300	C02	200	ENTER	F02	2	ENTER	
5	300	C03	300	ENTER	F03	2	ENTER	
		NPV		ENTER				
		1	7	ENTER				
		DOW	N CPT			874.17		
			Year 3	Year 5				
		N	3	5				
		I/Y	7	7				
		PV	-874.17	-874.17				
		PMT	0	0				
		CPT FV	1070.89	1226.07				
			¢	□ Re Sli	turn to deshow	\mathbf{X}	2	

consent of McGraw-Hill Education.

