

Key Concepts and Skills

- Understand how stock prices depend on future dividends and dividend growth
- Be able to compute stock prices using the dividend growth model
- Understand how corporate directors are elected
- Understand how stock markets work
- Understand how stock prices are quoted

Chapter Outline

7.1 Common Stock Valuation
 7.2 Some Features of Common and Preferred Stock

7.3 The Stock Markets

Cash Flows for Stockholders

- If you own a share of stock, you can receive cash in two ways
- The company pays dividends
- You sell your shares, either to another investor in the market or back to the company
- As with bonds, the price of the stock is the present value of these expected cash flows
- Dividends \rightarrow cash income
- Selling \rightarrow capital gains

One-Period Example (1 of 2)

- Suppose you are thinking of purchasing the stock of Moore Oil, Inc.
- You expect it to pay a $\$ 2$ dividend in one year
- You believe you can sell the stock for \$14 at that time.
- You require a return of 20% on investments of this risk
- What is the maximum you would be willing to pay?

One-Period Example (2 of 2)

- $D_{1}=\$ 2$ dividend expected in one year
- $\mathrm{R}=20 \%$
- $\mathrm{P}_{1}=\$ 14$
- $\mathrm{CF}_{1}=\$ 2+\$ 14=\$ 16$
- Compute the PV of the expected cash flows

$$
P_{0}=\frac{(2+14)}{1.20}=\$ 13.33
$$

Two-Period Example

- What if you decide to hold the stock for two years?
$-\mathrm{D}_{1}=\$ 2.00 \quad \mathrm{CF}_{1}=\$ 2.00$
$-\mathrm{D}_{2}=\$ 2.10$
$-\mathrm{P}_{2}=\$ 14.70 \quad \mathrm{CF}_{2}=\$ 2.10+\$ 14.70=\$ 16.80$
- Now how much would you be willing to pay?

$$
P_{0}=\frac{2}{1.20}+\frac{(2.10+14.70)}{(1.20)^{2}}=\$ 13.33
$$

Three-Period Example

- What if you decide to hold the stock for three years?
$-D_{1}=\$ 2.00$

$$
\mathrm{CF}_{1}=\$ 2.00
$$

$-\mathrm{D}_{2}=\$ 2.10 \quad \mathrm{CF}_{2}=\$ 2.10$
$\left.\begin{array}{l}-\mathrm{D}_{3}=\$ 2.205 \\ -\mathrm{P}_{3}=\$ 15.435\end{array}\right\} \mathrm{CF}_{3}=\$ 2.205+\$ 15.435=\$ 17.640$

- Now how much would you be willing to pay?

$$
P_{0}=\frac{2}{1.20}+\frac{2.10}{(1.20)^{2}}+\frac{(2.205+15.435)}{(1.20)^{3}}=\$ 13.33
$$

Developing the Model

- You could continue to push back when you would sell the stock
- You would find that the price of the stock is really just the present value of all expected future dividends

Stock Value = PV of Dividends

$$
\begin{gathered}
\hat{P}_{0}=\frac{D_{1}}{(1+R)^{1}}+\frac{D_{2}}{(1+R)^{2}}+\frac{D_{3}}{(1+R)^{3}}+\ldots+\frac{D_{0}}{(1+R)^{\circ}} \\
\hat{P}_{0}=\sum_{t=1}^{\infty} \frac{D_{t}}{(1+R)^{t}}
\end{gathered}
$$

How can we estimate all future dividend payments?

Estimating Dividends Special Cases

- Constant dividend/Zero Growth
- Firm will pay a constant dividend forever
- Like preferred stock
- Price is computed using the perpetuity formula
- Constant dividend growth
- Firm will increase the dividend by a constant percent every period
- Supernormal growth
- Dividend growth is not consistent initially, but settles down to constant growth eventually

Zero Growth

- Dividends expected at regular intervals forever = perpetuity

$$
P_{0}=D / R
$$

- Suppose stock is expected to pay a $\$ 0.50$ dividend every quarter and the required return is 10% with quarterly compounding. What is the price?

$$
P_{0}=\frac{0.50}{.10 / 4}=\$ 20
$$

Constant Growth Stock

One whose dividends are expected to grow forever at a constant rate, g.

$$
\begin{gathered}
D_{1}=D_{0}(1+g)^{1} \\
D_{2}=D_{0}(1+g)^{2} \\
D_{t}=D_{0}(1+g)^{t} \\
D_{0}=\text { Dividend JUST PAID } \\
D_{1} \text { to } D_{t}=\text { Expected dividends }
\end{gathered}
$$

Projected Dividends

- $\mathrm{D}_{0}=\$ 2.00$ and constant $\mathrm{g}=6 \%$
- $\mathrm{D}_{1}=\mathrm{D}_{0}(1+\mathrm{g})=2(1.06)=\$ 2.12$
- $\mathrm{D}_{2}=\mathrm{D}_{1}(1+\mathrm{g})=2.12(1.06)=\$ 2.2472$
- $\mathrm{D}_{3}=\mathrm{D}_{2}(1+\mathrm{g})=2.2472(1.06)=\$ 2.3820$

DGM: Example 1

- Suppose Big D, Inc. just paid a dividend of $\$.50$. It is expected to increase its dividend by 2% per year. If the market requires a return of 15% on assets of this risk, how much should the stock be selling for?
- $\mathrm{D}_{0}=\$ 0.50$

$$
\begin{aligned}
& P_{0}=\frac{D_{0}(1+g)}{R-g} \\
& P_{0}=\frac{0.50(1+.02)}{.15-.02}=\$ 3.92
\end{aligned}
$$

DGM: Example 2

- Suppose TB Pirates, Inc. is expected to pay a $\$ 2$ dividend in one year. If the dividend is expected to grow at 5\% per year and the required return is 20\%, what is the price?
$-D_{1}=\$ 2.00$
$-\mathrm{g}=5 \%$
$-r=20 \%$

$$
\begin{aligned}
& P_{0}=\frac{D_{1}}{R-g} \\
& P_{0}=\frac{2.00}{.20-.05}=\$ 13.33
\end{aligned}
$$

Stock Price Sensitivity to Dividend Growth, g

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written

Stock Price Sensitivity to Required Return, R

Example 7.3

Gordon Growth Company I

- Gordon Growth Company is expected to pay a dividend of $\$ 4$ next period and dividends are expected to grow at 6\% per year. The required return is 16%.
- What is the current price?

$$
\begin{aligned}
& P_{0}=\frac{D_{1}}{R-g} \\
& P_{0}=\frac{4.00}{.16-.06}=\$ 40
\end{aligned}
$$

Example 7.3

Gordon Growth Company II (1 of 2)

- What is the price expected to be in year 4?

$$
\begin{aligned}
& P_{4}=\frac{D_{4}(1+g)}{R-g}=\frac{D_{5}}{R-g} \\
& D_{5}=D_{1}(1+g)^{4} \\
& P_{4}=\frac{4.00(1+.06)^{4}}{.16-.06}=\$ 50.50
\end{aligned}
$$

Example 7.3

Gordon Growth Company II (2 of 2)

- What is the implied return given the change in price during the four year period?

$$
50.50=40(1+\text { return })^{4} ; \text { return }=6 \%
$$

4 N; -40 PV; 50.50 FV; 0 PMT; CPT I/Y = 6\%

- The price grows at the same rate as dividends

Nonconstant Growth

- Suppose a firm is expected to increase dividends by 20% in one year and by 15% in two years. After that dividends will increase at a rate of 5\% per year indefinitely. If the last dividend was $\$ 1$ and the required return is 20%, what is the price of the stock?
- Remember that we have to find the PV of all expected future dividends.

Nonconstant Growth -

 Solution- Compute the dividends until growth levels off
$-D_{1}=1(1.2)=\$ 1.20$
$-D_{2}=1.20(1.15)=\$ 1.38$
$-D_{3}=1.38(1.05)=\$ 1.449$
- Find the expected future price at the beginning of the constant growth period:
$-P_{2}=D_{3} /(R-g)=1.449 /(.2-.05)=9.66$
- Find the present value of the expected future cash flows

$$
-\mathrm{P}_{0}=1.20 /(1.2)+(1.38+9.66) /(1.2)^{2}=8.67
$$

Nonconstant + Constant Growth 1 of 2)

Basic PV of all Future Dividends Formula
$\hat{P}_{0}=\frac{D_{1}}{(1+R)^{1}}+\frac{D_{2}}{(1+R)^{2}}+\frac{D_{3}}{(1+R)^{3}}+\ldots+\frac{D_{\infty}}{(1+R)^{\infty}}$
Dividend Growth Model

$$
\hat{P}_{t}=\frac{D_{t+1}}{R-g}
$$

Nonconstant + Constant Growth

 (2 of 2)$$
\hat{P}_{0}=\frac{D_{1}}{(1+R)^{1}}+\frac{D_{2}}{(1+R)^{2}}+\frac{P_{2}}{(1+R)^{2}}
$$

Because $P_{2}=\sum_{t=3}^{\infty} \frac{D_{1}}{(1+R)^{t}}$

If g constant after $t=2$, then

$$
P_{2}=\frac{D_{3}}{R-g}
$$

Nonconstant Growth Followed by Constant Growth

 $\underline{\underline{8.6667}}=P_{0}$

Quick Quiz: Part 1

- What is the value of a stock that is expected to pay a constant dividend of $\$ 2$ per year if the required return is 15% ?

$$
P_{0}=\frac{2.00}{.15}=\$ 13.33
$$

- What if the company starts increasing dividends by 3\% per year beginning with the next dividend? The required return remains at 15%.

$$
P_{0}=\frac{2.00(1.03)}{.15-.03}=\$ 17.17
$$

Using the DGM to Find R

Start with the DGM:

$$
P_{0}=\frac{D_{0}(1+g)}{R-g}=\frac{D_{1}}{R-g}
$$

Rearrange and solve for R :

$$
R=\frac{D_{0}(1+g)}{P_{0}}+g=\frac{D_{1}}{P_{0}}+g
$$

Finding the Required Return Example (1 of 3)

- A firm's stock is selling for $\$ 10.50$. They just paid a $\$ 1$ dividend and dividends are expected to grow at 5% per year.
- What is the required return?

Finding the Required Return Example (2 of 3)

- $\mathrm{P}_{0}=\$ 10.50$.
- $\mathrm{D}_{0}=\$ 1$
- $\mathrm{g}=5 \%$ per year.
- What is the required return?

$$
\begin{aligned}
& R=\frac{D_{0}(1+g)}{P_{0}}+g=\frac{D_{1}}{P_{0}}+g \\
& R=\frac{1.00(1.05)}{10.50}+.05=15 \%
\end{aligned}
$$

Finding the Required Return Example (3 of 3)

- $\mathrm{P}_{0}=\$ 10.50$
- $\mathrm{D}_{0}=\$ 1$
- $\mathrm{g}=5 \%$ per year
- What is the dividend yield?

$$
1(1.05) / 10.50=10 \%
$$

- What is the capital gains yield?

$$
\mathrm{g}=5 \%
$$

$R=$| $\frac{D_{0}(1+g)}{P_{0}}$ |
| :---: |
| $\frac{D_{1}}{P_{0}}$ |
| $1.00(1.05)$ |
| 10.50 |$+$

Dividend
Yield
:---
Yield

$05=15 \%$

Valuation Using Multiples

- For stocks that don' t pay dividends (or have erratic dividend growth rates), we can value them using the price-earnings (PE) ratio and/or the price-sales ratio:

Price at time $t=P_{t}$
$=$ Benchmark PE ratio X Earnings per share ${ }_{t}$

Price at time $t=P_{t}$
$=$ Benchmark price-sales ratio X Sales per share ${ }_{t}$

- The price-sales ratio can be especially useful when earnings are negative.

Table 7.1

```
1. The general case
    T
    dividends, D, D, D
P}=\frac{\mp@subsup{D}{1}{}}{(1+R\mp@subsup{)}{}{\prime}}+\frac{\mp@subsup{D}{2}{}}{(1+R\mp@subsup{)}{}{3}}+\frac{\mp@subsup{D}{3}{}}{(1+R\mp@subsup{)}{}{x}}
where }R\mathrm{ is the required return.
il. Constant growth case
    If the dividend is constant and equal to D, then the price can be written as:
    P
    If the dividend grows at a steady rate g, then the price can be written as:
    Po}=\frac{D}{R-\sigma
    This result is called the dividend growth model
III. Nonconstant Growth
    The dividend grows steadily after t periods, then the price can be written as:
    P}=\frac{\mp@subsup{D}{1}{}}{(1+R\mp@subsup{)}{}{\prime}}+\frac{\mp@subsup{D}{2}{}}{(1+R\mp@subsup{)}{}{2}}+\ldots+\frac{\mp@subsup{D}{1}{}}{(1+R\mp@subsup{)}{}{\prime}}+\frac{\mp@subsup{P}{1}{\prime}}{(1+R\mp@subsup{)}{}{\prime}
    where:
    P}=\frac{\mp@subsup{D}{1}{}\times(T+g)}{(R-g)
IV. The required return, R, can be written as the sum of two things:
    R=D,}/\mp@subsup{P}{o}{}+
    where }\mp@subsup{D}{1}{}/\mp@subsup{P}{0}{}\mathrm{ is the dividend yield and g}g\mathrm{ is the capital gains yield (which is the same thing
    as the growth rate in dividends for the steady growth case).
v. Valuatlon Using Comparables
For stocks that don't pay dividends (or have erratic dividend growth rates), we can value
    them using the PE ratio and/or the price-sales ratio:
    P
    P
```


Features of Common Stock

 (1 of 2)- Voting Rights
- Stockholders elect directors
- Cumulative voting vs. Straight voting
- Boards are often staggered, or "classified"
- Proxy voting
- Classes of stock
- Founders' shares
- Class A and Class B shares

Return to Quick Quiz

Features of Common Stock

- Other Rights (2 of 2)

- Share proportionally in declared dividends
- Share proportionally in remaining assets during liquidation
- Preemptive right
- Right of first refusal to buy new stock issue to maintain proportional ownership if desired

Dividend Characteristics

- Dividends are not a liability of the firm until declared by the Board of Directors
- A firm cannot go bankrupt for not declaring dividends
- Dividends and Taxes
- Dividends are not tax deductible for firm
- Ordinary dividends taxed as ordinary income for individuals. Qualified dividends tax at the capital gains tax rate.
- Dividends received by corporations have a minimum 50\% exclusion from taxable income $\begin{aligned} & \text { Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written } \\ & \text { consent of McGraw-Hill Education. }\end{aligned} \quad 7-40$

Features of Preferred Stock

- Dividends
- Must be paid before dividends can be paid to common stockholders
- Not a liability of the firm
- Can be deferred indefinitely
- Most preferred dividends are cumulative
- Missed preferred dividends have to be paid before common dividends can be paid
- Preferred stock generally does not carry voting rights

The Stock Markets

- Primary vs. Secondary Markets
- Primary = new-issue market
- Secondary = existing shares traded among investors
- Dealers vs. Brokers
- Dealer: Maintains an inventor Ready to buy or sell at any time Think "Used car dealer"
- Broker: Brings buyers and sellers together Think "Real estate broker"

New York Stock Exchange (NYSE)

- NYSE

- Merged with Euronext in 2007
- NYSE Euronext merged with the American Stock Exchange in 2008
- Members (Historically)
- Buy a trading license (own a seat)
- Designated market makers, DMMs (formerly known as "specialists")
- Floor brokers
- Supplemental liquidity providers (SLPs)

NYSE Operations

- Operational goal = attract order flow
- NYSE DMMs:
- Assigned broker/dealer
- Each stock has one assigned DMM
- All trading in that stock occurs at the "DMM's post"
- Trading takes place between customer orders placed with the DMMs and "the crowd"
- "Crowd" = Floor brokers and SLPs

NASDAQ

- NASDAQ OMX (merged 2007)
- Computer-based quotation system
- Multiple market makers
- Electronic Communications Networks
- Three levels of information
- Level 1 - median quotes, registered representatives
- Level 2 - view quotes, brokers \& dealers
- Level 3 - view and update quotes, dealers only
- Large portion of technology stocks

Source: finance.yahoo.com, 2018

- What information is provided in the stock quote?
- Click on this link to go to Bloomberg for current stack quotes.
.ition. All rights reserved. No reproduction or distribution without the prior written
consent of McGraw-Hill Education.

Work the Web

- Not only are stock price quotes readily available online. Some online trading sites display their "order book" or "limit order book" live online.
- The BATS Exchange was one of these websites until it was purchased by the CBOE in 2016.
- Follow this link to see current buy and sell orders for Microsoft (MSFT).

[^0]
Quick Quiz: Part 2 (1 of 2)

- You observe a stock price of $\$ 18.75$. You expect a dividend growth rate of 5% and the most recent dividend was $\$ 1.50$. What is the required return?

$$
\begin{aligned}
& R=\frac{D_{0}(1+g)}{P_{0}}+g=\frac{D_{1}}{P_{0}}+g \\
& R=\frac{1.50(1.05)}{18.75}+.05=13.4 \%
\end{aligned}
$$

Quick Quiz: Part 2 (2 of 2)

- What are some of the major characteristics of common stock? (Slide 38 and Slide 39)
- What are some of the major characteristics of preferred stock? (Slide 41)

[^0]: Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

