

Key Concepts and Skills

After studying this chapter, you should be able to:

- Calculate the return on an investment.
- Discuss the historical returns on various types of investments.
- Explain the historical risks on various types of investments.
- Assess the implications of market efficiency.

Chapter Outline

10.1 Returns
10.2 The Historical Record
10.3 Average Returns: The First Lesson
10.4 The Variability of Returns: The SecondLesson10.5 More on Average Returns10.6 Capital Market Efficiency

Risk-Return Trade-off

- Two key lessons from capital market history:
- There is a reward for bearing risk.
- The greater the potential reward, the greater the risk

Dollar \& Percent Returns

- Total dollar return = the return on an investment measured in dollars
- \$ Return = Dividends + Capital Gains
- Capital Gains = Price received - Price paid
- Total percent return = the return on an investment measured as a percentage of the original investment.
- \% Return = \$ Return/\$ Invested

Percent Return

Dividend Yield $\Rightarrow \quad D Y=\frac{D_{t+1}}{P_{t}}$
Capital Gains $\Rightarrow C G Y=\frac{P_{t+1} P_{t}}{P_{t}}$
Yield
\% Return $=D Y+C G Y$
$\%$ Return $=\frac{D_{t+1}+P_{t+1} \quad P_{t}}{P_{t}}$

Example: Calculating Total Dollar and Total Percent Returns

- You invest in a stock with a share price of $\$ 25$.
- After one year, the stock price per share is $\$ 35$.
- Each share paid a $\$ 2$ dividend.
- What was your total return?

	Dollars	Percent
Dividend	$\$ 2.00$	$\$ 2 / 25=8 \%$
Capital Gain	$\$ 35-\$ 25=\$ 10$	$\$ 10 / 25=40 \%$
Total Return	$\$ 2+\$ 10=\$ 12$	$\$ 12 / \$ 25=48 \%$

U.S. Financial Markets

Year-to-Year Total Returns (1 of 3)

Large-Company Stock Returns

Year-to-Year Total Returns (2 of 3)

Small-Company Stock Returns

Year-to-year total
returns on smallcompany stocks: 1926-2017

Year-to-Year Inflation

Average Returns: The First Lesson

	1926-2017
Table 10.2	
Large stocks	Average Return
Small stocks	12.1%
Long-term corporate bonds	16.5%
Long-term government bonds	6.4%
U.S. Treasury bills	6.0%
Inflation	3.4%

Historical Average Returns

- Historical Average Return = simple, or arithmetic average

- Using the data in Table 10.1:
- Sum the returns for large-company stocks from 1926 through 2014, you get about 10.77/89 years $=12.1 \%$.
- Your best guess about the size of the return for a year selected at random is 12.1%.

Risk Premiums

- Risk-free rate:
- Rate of return on a riskless investment
-Treasury Bills are considered risk-free.
- Risk premium:
- Excess return on a risky asset over the risk-free rate
- Reward for bearing risk

Historical Risk Premiums

- Large Stocks: $12.1-3.4=8.7 \%$
- Small Stocks:
$16.5-3.4=13.1 \%$
- L/T Corporate Bonds:

$$
\begin{array}{r}
6.4-3.4=3.0 \% \\
6.0-3.4=
\end{array}
$$

- L/T Government Bonds: 2.6\%
- U.S. Treasury Bills:
$3.4-3.4=0 *$
* By definition!

Risk

Risk is measured by the dispersion, spread, or volatility of returns.

Source: Morningstar, 2018, author calculations.

Return Variability Review

- Variance $=\operatorname{VAR}(\mathrm{R})$ or σ^{2}
- Common measure of return dispersion
- Also call variability
- Standard deviation $=$ SD(R) or σ
- Square root of the variance
- Sometimes called volatility
- Same "units" as the average

Return Variability:
 The Statistical Tools for Historical Returns

- Return variance: ("T" =number of returns)

$$
\operatorname{VAR}(R)=\sigma^{2}=\frac{\sum_{i=1}^{T}\left(R_{i}-\bar{R}\right)^{2}}{T-1}
$$

- Standard Deviation:

$$
\operatorname{SD}(R)=\sigma=\sqrt{\operatorname{VAR}(R)}
$$

Example: Calculating Historical Variance and Standard Deviation

- Using data from Table 10.1 for large-company stocks:

(1)	(2)	(3)	(4)	(5)
		Average Return:	Difference: $(2)-(3)$	Squared: (4) $\times(4)$
Year	Return	(2)	(11.48	-0.34
1926	11.14	0.12		
1927	37.13	11.48	25.65	657.82
1928	43.31	11.48	31.83	1013.02
1929	-8.91	11.48	-20.39	415.83
1930	-25.26	11.48	-36.74	1349.97
Sum:	57.41		Sum:	3436.77

Average: 11.48
Variance: 859.19

Standard Deviation: 29.31
$\begin{aligned} & \text { Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written } \\ & \text { consent of McGraw-Hill Education. }\end{aligned} 10-20$

Example: Work the Web

- How volatile are mutual funds?
- Morningstar provides information on mutual funds, including volatility (standard deviation).
- Click on this link to go to the Morningstar site.
- Pick a fund, such as the Fidelity Magellan (FMAGX).
- Enter the ticker in the "Stock/Fund" box, click on the "Go" button, and then click on "Ratings \& Risk."

Historical average returns, standard deviations, and frequency distributions: 1926-2017

Source: Momingstor, 2018, author calculestons.

Return Variability Review and Concepts

- Normal distribution:
- A symmetric frequency distribution
- The "bell-shaped curve"
- Completely described by the mean and variance
- Does a normal distribution describe asset returns?

The Normal Distribution

Figure 10.11

Record One-Day Losses

Top 12 One-Day Percentage Changes in the Dow Jones Industrial Average

1	October 19, 1987	-22.61
2	October 28, 1929	-12.82
3	October 29, 1929	-11.73
4	November 6, 1929	-9.92
5	December 18, 1899	-8.72
6	August 12, 1932	-8.40
7	March 14, 1907	-8.29
8	October 26, 1987	-8.04
9	October 15, 2008	-7.87
10	July 21, 1933	-7.84
11	October 18, 1937	-7.75
12	December 1, 2008	-7.70

Source: http://online.wsj.com/mdc/public/page/2_3047 -djia_alltime.html.

2008: S\&P 500 Monthly Returns

FIGURE 10.12

S\&P 500 monthly returns: 2008

Arithmetic vs. Geometric Mean

- Arithmetic average:
- Return earned in an average period over multiple periods
- Answers the question: "What was your return in an average year over a particular period?"
- Geometric average:
- Average compound return per period over multiple periods
- Answers the question: "What was your average compound return per year over a particular period?"
- Geometric average < arithmetic average unless all the returns are equal

Geometric Average Return: Formula

Equation 10.4
$G A R=\left[\left(1+R_{1}\right) \times\left(1+R_{2}\right) \times \ldots \times\left(1+R_{N}\right)\right]^{1 / \pi}-1$
Where:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i}}=\text { return in each period } \\
& \mathrm{T}=\text { number of periods }
\end{aligned}
$$

Geometric Average Return (1 of 2)

$G A R=\left[\prod_{i=1}^{T}\left(1+R_{i}\right)\right]^{1 / T}-1$
Where:

$$
\begin{aligned}
& \Pi=\text { Product (like } \Sigma \text { for sum) } \\
& \mathrm{T}=\text { Number of periods in sample } \\
& \mathrm{R}_{\mathrm{i}}=\text { Actual return in each period }
\end{aligned}
$$

Example: Calculating a Geometric Average Return Example 10.4

Year	Percent Return	One Plus Return	Compounded Return:
1926	11.14	1.1114	1.1114
1927	37.13	1.3713	1.5241
1928	43.31	1.4331	2.1841
1929	-8.91	0.9109	1.9895
1930	-25.26	0.7474	1.4870
(1.4870)^(1/5): 1.0826			
Geometric Average Return:			8.26\%

Geometric Average Return

(2 of 2)

Year	Percent Return	One Plus Return	Compounded Return:
1926	11.14	1.1114	1.1114
1927	37.13	1.3713	1.5241
1928	43.31	1.4331	2.1841
1929	-8.91	0.9109	1.9895
1930	-25.26	0.7474	1.4870
		$(1.4870)^{\wedge}(1 / 5):$	1.0826

Geometric Average Return: \qquad

N	5	
I / Y	$C P T=$	8.26%
PV	$\$(1.0000)$	
PMT	0	
FV	$\$ 1.4870$	

Historical Geometric vs. Arithmetic Average Returns

Series	Average Return		Standard Deviation	TABLE 10.4
	Geometric	Arithmetic		Geometric versus arithmetic average returns: 1926-2017
Large-company stocks	10.2\%	12.1\%	19.8\%	
Small-company stocks	12.1	16.5	31.7	
Long-term corporate bonds	6.1	6.4	8.3	
Long-term government bonds	5.5	6.0	9.9	
Intermediate-term government bonds	5.1	5.2	5.6	
U.S. Treasury bills	3.4	3.4	3.1	
Inflation	2.9	3.0	4.0	

Efficient Capital Markets

- The Efficient Market Hypothesis:
- Stock prices are in equilibrium.
- Stocks are "fairly" priced.
- Informational efficiency
- If true, you should not be able to earn "abnormal" or "excess" returns.
- Efficient markets DO NOT imply that investors cannot earn a positive return in the stock market.

Reaction of Stock Price to New Information in Efficient and Inefficient Markets Figure 10.14

FIGURE 10.14 Reaction of stock price to new information in efficient and inefficient markets

Forms of Market Efficiency

- Strong Form Efficient Market:
- Information = public or private
- " "Inside information" is of little use
- Semistrong Form Efficient Market:
- Information = publicly available information
- \Rightarrow Fundamental analysis is of little use
- Weak Form Efficient Market:
- Information = past prices and volume data
- \Rightarrow Technical analysis is of little use

Strong Form Efficiency

- Prices reflect all information, including public and private.
- If true, then investors cannot earn abnormal returns regardless of the information they possess.
- Empirical evidence indicates that markets are NOT strong form efficient.
- Insiders can earn abnormal returns (may be illegal).

Semistrong Form Efficiency

- Prices reflect all publicly available information including trading information, annual reports, press releases, etc.
- If true, then investors cannot earn abnormal returns by trading on public information.
- Implies that fundamental analysis will not lead to abnormal returns

Weak Form Efficiency

- Prices reflect all past market information such as price and volume.
- If true, then investors cannot earn abnormal returns by trading on market information.
- Implies that technical analysis will not lead to abnormal returns
- Empirical evidence indicates that markets are generally weak form efficient.

Efficient Market Hypotheses

Common Misconceptions about EMH

- EMH does not mean that you can't make money.
- EMH does mean that:
- On average, you will earn a return appropriate for the risk undertaken.
- There is no bias in prices that can be exploited to earn excess returns.
- Market efficiency will not protect you from wrong choices if you do not diversify-you still don't want to put all your eggs in one basket.

