

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Key Concepts and Skills

After studying this chapter, you should be able to:

- Calculate the return on an investment.
- Discuss the historical returns on various types of investments.
- Explain the historical risks on various types of investments.
- Assess the implications of market efficiency.

Chapter Outline

10.1	Returns	
10.2	The Historical Record	
10.3	Average Returns: The First Lesson	
10.4	The Variability of Returns: The Seco	ond
Lesson		
10.5	More on Average Returns	
10.6	Capital Market Efficiency	
		and the second

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-3

Risk-Return Trade-off

- Two key lessons from capital market history:
 - There is a reward for bearing risk.
 - The greater the potential reward, the greater the risk

Dollar & Percent Returns

- Total dollar return = the return on an investment measured in dollars
 - \$ Return = Dividends + Capital Gains
 - Capital Gains = Price received Price paid
- Total percent return = the return on an investment measured as a percentage of the original investment.
 - % Return = \$ Return/\$ Invested

Percent Return

Dividend Yield $DY = \frac{D_{t+1}}{P_t}$ Capital Gains Yield $CGY = \frac{P_{t+1} - P_t}{P_t}$ % Return = DY + CGY% Return = $\frac{D_{t+1} + P_{t+1} - P_t}{P_t}$

Example: Calculating Total Dollar and Total Percent Returns

- You invest in a stock with a share price of \$25.
- After one year, the stock price per share is \$35.
- Each share paid a \$2 dividend.
- What was your total return?

	Dollars	Percent
Dividend	\$2.00	\$2/25 = 8%
Capital Gain	\$35 - \$25 = \$10	\$10/25= 40 %
Total Return	\$2 + \$10 = \$12	\$12/\$25 = 48%

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-7

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-9

Year-to-Year Inflation

	10 C	
Average Returns: The F	irst Lesson	
1926-2017	Table 10.2	
Investment	Average Return	
Large stocks	12.1%	
Small stocks	16.5%	
Long-term corporate bonds	6.4%	
Long-term government bonds	6.0%	
U.S. Treasury bills	3.4%	
Inflation	3.0%	
		1100000

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-13

Historical Average Returns

 Historical Average Return = simple, or arithmetic average

Historical Average Return = $\frac{\overset{T}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{}}}}}{T}$

- Using the data in Table 10.1:
 - Sum the returns for large-company stocks from 1926 through 2014, you get about 10.77/89 years = 12.1%.
- Your best guess about the size of the return for a year selected at random is 12.1%.

Risk Premiums

- Risk-free rate:
 - Rate of return on a riskless investment
 - Treasury Bills are considered risk-free.
- Risk premium:
 - Excess return on a risky asset over the risk-free rate
 - Reward for bearing risk

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-15

Historical Risk Premiums

- Large Stocks: 12.1 3.4 = 8.7%
- Small Stocks: 16.5 3.4 = 13.1%
- L/T Corporate Bonds: 6.4 3.4 = 3.0%
- L/T Government Bonds: 6.0 3.4 = 2.6%
- U.S. Treasury Bills: 3.4 3.4 =
 - * By definition!

Table 10.3

Copyright ©2020 McGraw-HillEducation. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-HillEducation. 10-16

0*

Risk

Risk is measured by the dispersion, spread, or volatility of returns.

Return Variability Review

- Variance = VAR(R) or σ^2
 - Common measure of return dispersion
 - Also call variability
- Standard deviation = SD(R) or σ
 - Square root of the variance
 - Sometimes called volatility
 - Same "units" as the average

 ${\it Copyright} @ 2020 \ {\it McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written and the prior written an$ 10-18

Return Variability: The Statistical Tools for <u>Historical</u> Returns

• Return variance: ("T" =number of returns)

$$VAR(R) = \sigma^{2} = \frac{\sum_{i=1}^{T} (R_{i} - \overline{R})^{2}}{T - 1}$$

• Standard Deviation:

$$SD(R) = \sigma = \sqrt{VAR(R)}$$

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-19

Example: Calculating <u>Historical</u> Variance and Standard Deviation

• Using data from Table 10.1 for large-company stocks:

[(1)	(2)	(3)	(4)	(5)
ſ			Average	Difference:	Squared:
	Year	Return	Return:	(2) - (3)	(4) x (4)
ſ	1926	11.14	11.48	-0.34	0.12
	1927	37.13	11.48	25.65	657.82
	1928	43.31	11.48	31.83	1013.02
	1929	-8.91	11.48	-20.39	415.83
	1930	-25.26	11.48	-36.74	1349.97
	Sum:	57.41		Sum:	3436.77
			-		
	Average:	11.48		Variance:	859.19
			Standar	d Deviation:	29.31

Example: Work the Web

- How volatile are mutual funds?
- Morningstar provides information on mutual funds, including volatility (standard deviation).
- Click on this link to go to the Morningstar site.
 - Pick a fund, such as the Fidelity Magellan (FMAGX).
 - Enter the ticker in the "Stock/Fund" box, click on the "Go" button, and then click on "Ratings & Risk."

Copyright ©2020 McGraw-HillEducation. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-HillEducation. 10-21

Return Variability Review and Concepts

- Normal distribution:
 - A symmetric frequency distribution
 - The "bell-shaped curve"
 - Completely described by the mean and variance
- Does a normal distribution describe asset returns?

Copyright © 2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

The Normal Distribution Figure 10.11

["] 10-23

Record One-Day Losses

Top 12 Jones	2 One-Day Percentage Chang Industrial Average	es in the Dow
1	October 19, 1987	-22.61
2	October 28, 1929	-12.82
3	October 29, 1929	-11.73
4	November 6, 1929	- 9.92
5	December 18, 1899	- 8.72
6	August 12, 1932	- 8.40
7	March 14, 1907	- 8.29
8	October 26, 1987	- 8.04
9	October 15, 2008	- 7.87
10	July 21, 1933	- 7.84
11	October 18, 1937	- 7.75
12	December 1, 2008	- 7.70

Source: http://online.wsj.com/mdc/public/page/2_3047 -djia_alltime.html.

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-25

2008: The Bear Growled and Investors Howled

- The S&P 500 lost 50% of its value from November 2007 through March 2009.
 - On the other hand, long-term Treasuries gained 40% during 2008.
- A global phenomenon
- Volatile in both directions
 - The S&P 500 doubled in value from March
 2009 through February 2011.

2008: S&P 500 Monthly Returns

Arithmetic vs. Geometric Mean

- Arithmetic average:
 - Return earned in an average period over multiple periods
 - Answers the question: "What was your return in an average year over a particular period?"
- Geometric average:
 - Average compound return per period over multiple periods
 - Answers the question: "What was your average compound return per year over a particular period?"
- Geometric average < arithmetic average unless all the returns are equal

Copyright ©2020 McGraw-HillEducation. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-HillEducation. 10-27

Geometric Average Return: Formula

Equation 10.4

$$GAR = \left[(1+R_{1}) \times (1+R_{2}) \times ... \times (1+R_{N}) \right]^{1/T} - 1$$

Where:

 R_i = return in each period

T = number of periods

Copyright ©2020 McGraw-HillEducation. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-HillEducation. 10-29

Geometric Average Return (1 of 2)

$$GAR = \left[\prod_{i=1}^{T} (1+R_i)\right]^{1/T} - 1$$

Where:

- $\Pi = Product \text{ (like } \Sigma \text{ for sum)}$
- T = Number of periods in sample
- R_i = Actual return in each period

Example: Calculating a Geometric Average Return Example 10.4

	Percent	One Plus	Compounded
Year	Return	Return	Return:
1926	11.14	1.1114	1.1114
1927	37.13	1.3713	1.5241
1928	43.31	1.4331	2.1841
1929	-8.91	0.9109	1.9895
1930	-25.26	0.7474	1.4870
	(1.4870)^(1/5):	1.0826
X			
Ge	eometric Av	erage Return:	8.26%

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-31

Geometric Average Return (2 of 2)

	Percent	One Plus	Compounded
Year	Return	Return	Return:
1926	11.14	1.1114	1.1114
1927	37.13	1.3713	1.5241
1928	43.31	1.4331	2.1841
1929	-8.91	0.9109	1.9895
1930	-25.26	0.7474	1.4870
		(1.4870)^(1/5):	1.0826

Geometric Average Return:

8.26%

X

Ν	5	
I/Y	CPT =	8.26%
PV	\$ (1.0000)	
PMT	0	
FV	\$ 1.4870	

Historical Geometric vs. Arithmetic Average Returns

	Average Return			
Series	Geometric	Arithmetic	Standard Deviation	
Large-company stocks	10.2%	12.1%	19.8%	
Small-company stocks	12.1	16.5	31.7	
Long-term corporate bonds	6.1	6.4	8.3	
Long-term government bonds	5.5	6.0	9.9	
Intermediate-term government bonds	5.1	5.2	5.6	
U.S. Treasury bills	3.4	3.4	3.1	
Inflation	2.9	3.0	4.0	

TABLE 10.4

Geometric versus arithmetic average returns: 1926–2017

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-33

Arithmetic vs. Geometric Mean Which is better?

- The arithmetic average is overly optimistic for long horizons.
- The geometric average is overly pessimistic for short horizons.
- Depends on the planning period under consideration
 - 15 20 years or less: use the arithmetic
 - 20 40 years or so: split the difference between them
 - 40 + years: use the geometric

Efficient Capital Markets

- The Efficient Market Hypothesis:
 - Stock prices are in equilibrium.
 - Stocks are "fairly" priced.
 - Informational efficiency
- If true, you should not be able to earn "abnormal" or "excess" returns.
- Efficient markets *DO NOT* imply that investors cannot earn a positive return in the stock market.

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-35

Reaction of Stock Price to New Information in Efficient and Inefficient Markets Figure 10.14

Forms of Market Efficiency

• Strong Form Efficient Market:

- Information = public or private
- ➡"Inside information" is of little use

• Semistrong Form Efficient Market:

- Information = publicly available information
- − ➡Fundamental analysis is of little use

• Weak Form Efficient Market:

- Information = past prices and volume data

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-37

Strong Form Efficiency

- Prices reflect <u>all information</u>, including public and private.
- If true, then investors cannot earn abnormal returns regardless of the information they possess.
- Empirical evidence indicates that markets are NOT strong form efficient.
 - Insiders can earn abnormal returns (may be illegal).

Semistrong Form Efficiency

- Prices reflect all <u>publicly available information</u> including trading information, annual reports, press releases, etc.
- If true, then investors cannot earn abnormal returns by trading on public information.
- Implies that fundamental analysis will not lead to abnormal returns

Copyright ©2020 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. 10-39

Weak Form Efficiency

- Prices reflect <u>all past market information</u> such as price and volume.
- If true, then investors cannot earn abnormal returns by trading on market information.
- Implies that technical analysis will not lead to abnormal returns
- Empirical evidence indicates that markets are generally weak form efficient.

Common Misconceptions about EMH

- EMH does not mean that you can't make money.
- EMH does mean that:
 - On average, you will earn a return appropriate for the risk undertaken.
 - There is no bias in prices that can be exploited to earn excess returns.
 - Market efficiency will not protect you from wrong choices if you do not diversify—you still don't want to put all your eggs in one basket.

