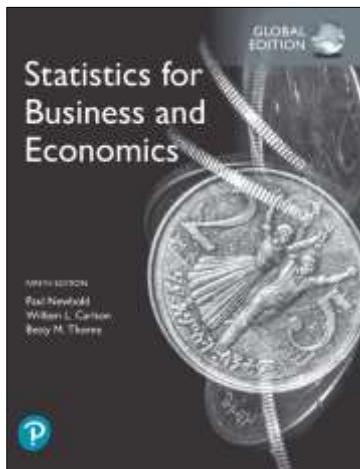


Statistics for Business and Economics

Ninth Edition, Global Edition



Chapter 11

Simple Regression

 Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 1

1

Chapter Goals (1 of 2)

After completing this chapter, you should be able to:

- Explain the simple linear regression model
- Obtain and interpret the simple linear regression equation for a set of data
- Describe R^2 as a measure of explanatory power of the regression model
- Understand the assumptions behind regression analysis
- Explain measures of variation and determine whether the independent variable is significant

 Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 2

2

Chapter Goals (2 of 2)

After completing this chapter, you should be able to:

- Calculate and interpret confidence intervals for the regression coefficients
- Use a regression equation for prediction
- Form forecast intervals around an estimated Y value for a given X
- Use graphical analysis to recognize potential problems in regression analysis
- Explain the correlation coefficient and perform a hypothesis test for zero population correlation

Section 11.1 Overview of Linear Models

- An equation can be fit to show the best linear relationship between two variables:

$$Y = \beta_0 + \beta_1 X$$

Where Y is the dependent variable and
 X is the independent variable
 β_0 is the Y -intercept
 β_1 is the slope

Least Squares Regression

- Estimates for coefficients β_0 and β_1 are found using a Least Squares Regression technique
- The least-squares regression line, based on sample data, is

$$\hat{y} = b_0 + b_1 x$$

- Where b_1 is the slope of the line and b_0 is the y -intercept:

$$b_1 = \frac{Cov(x, y)}{s_x^2} = r \left(\frac{s_y}{s_x} \right) \quad b_0 = \bar{y} - b_1 \bar{x}$$

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain
(also called the endogenous variable)

Independent variable: the variable used to explain the dependent variable
(also called the exogenous variable)

Section 11.2 Linear Regression Model

- The relationship between X and Y is described by a linear function
- Changes in Y are assumed to be influenced by changes in X
- Linear regression population equation model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- Where β_0 and β_1 are the population model coefficients and ε is a random error term.

Simple Linear Regression Model (1 of 2)

The population regression model:

$$y_i = \underbrace{\beta_0 + \beta_1 x_i}_{\text{Linear component}} + \underbrace{\varepsilon_i}_{\text{Random Error component}}$$

Annotations for the components:

- Population Y intercept: Points to β_0
- Population Slope Coefficient: Points to β_1
- Independent Variable: Points to x_i
- Random Error term: Points to ε_i
- Dependent Variable: Points to y_i

Linear Regression Assumptions

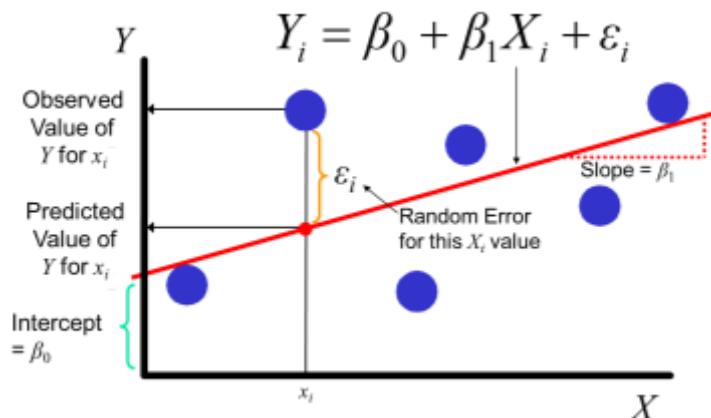
- The true relationship form is linear (Y is a linear function of X , plus random error)
- The error terms, ε_i are independent of the x values
- The error terms are random variables with mean 0 and constant variance, σ^2
(the uniform variance property is called homoscedasticity)

$$E[\varepsilon_i] = 0 \text{ and } E[\varepsilon_i^2] = \sigma^2 \text{ for } (i = 1, \dots, n)$$

- The random error terms ε_i , are not correlated with one another, so that

$$E[\varepsilon_i \varepsilon_j] = 0 \text{ for all } i \neq j$$

Simple Linear Regression Model (2 of 2)



Simple Linear Regression Equation

The simple linear regression equation provides an estimate of the population regression line

$$\hat{y}_i = b_0 + b_1 x_i$$

Estimated (or predicted) y value for observation i

Estimate of the regression intercept

Estimate of the regression slope

Value of x for observation i

The individual random error terms e_i have a mean of zero

$$e_i = (y_i - \hat{y}_i) = y_i - (b_0 + b_1 x_i)$$

11

Section 11.3 Least Squares Coefficient Estimators (1 of 2)

- b_0 and b_1 are obtained by finding the values of b_0 and b_1 that minimize the sum of the squared residuals (errors), SSE:

$$\begin{aligned}
 \min \text{ SSE} &= \min \sum_{i=1}^n e_i^2 \\
 &= \min \sum (y_i - \hat{y}_i)^2 \\
 &= \min \sum [y_i - (b_0 + b_1 x_i)]^2
 \end{aligned}$$

Differential calculus is used to obtain the coefficient estimators b_0 and b_1 that minimize SSE

12

Least Squares Coefficient Estimators (2 of 2)

- The slope coefficient estimator is

$$b_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{Cov(x, y)}{s_x^2} = r \frac{s_y}{s_x}$$

- And the constant or y -intercept is

$$b_0 = \bar{y} - b_1 \bar{x}$$

- The regression line always goes through the mean \bar{x}, \bar{y}

Computer Computation of Regression Coefficients

- The coefficients b_0 and b_1 , and other regression results in this chapter, will be found using a computer
 - Hand calculations are tedious
 - Statistical routines are built into Excel
 - Other statistical analysis software can be used

Interpretation of the Slope and the Intercept

- b_0 is the estimated average value of y when the value of x is zero (if $x = 0$ is in the range of observed x values)
- b_1 is the estimated change in the average value of y as a result of a one-unit change in x

Simple Linear Regression Example

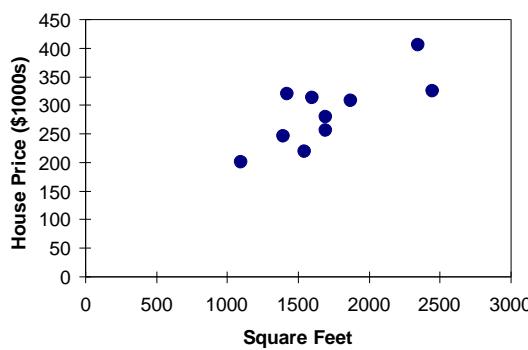
- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

Sample Data for House Price Model

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

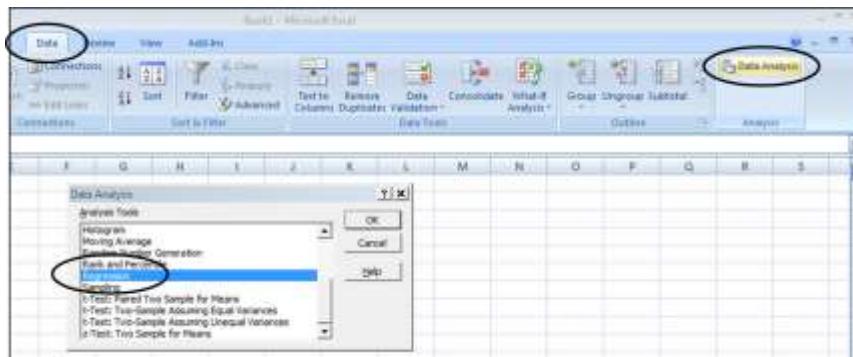
Graphical Presentation (1 of 2)

- House price model: scatter plot



Regression Using Excel (1 of 2)

- Excel will be used to generate the coefficients and measures of goodness of fit for regression
 - Data / Data Analysis / Regression



P Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 19

19

Regression Using Excel (2 of 2)

- Data / Data Analysis / Regression

P Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 20

20

Excel Output (1 of 6)

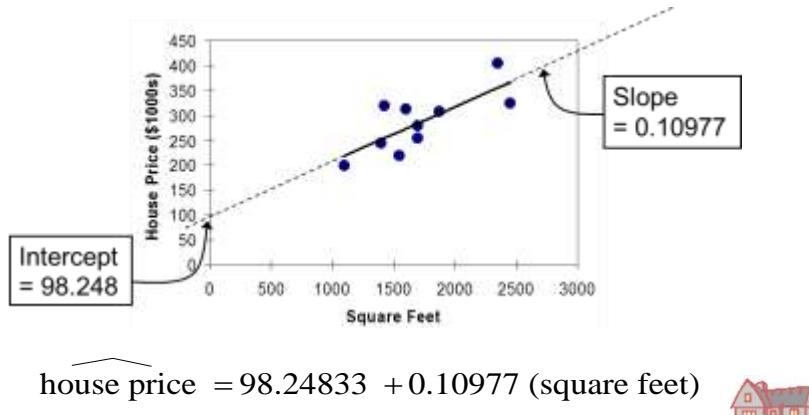
A	B	C	D	E	F	G
1 SUMMARY OUTPUT						
2						
3 Regression Statistics						
4 Multiple R	0.762113713					
5 R Square	0.580617312					
6 Adjusted R Square	0.528419476					
7 Standard Error	41.33032365					
8 Observations	10					
9						
10 ANOVA						
11	df	SS	MS	F	Significance F	
12 Regression	1	18934.9348	18934.9348	11.0848	0.01039	
13 Residual	8	13665.5652	1708.1957			
14 Total	9	32600.5				
15						
16	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17 Intercept	98.24833	58.03348	1.69296	0.12892	-35.57711	232.07377
18 Square Feet (X)	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Excel Output (2 of 6)

Regression Statistics							
Multiple R	0.76211	The regression equation is:					
R Square	0.58082	$\widehat{\text{house price}} = 98.24833 + 0.10977 \text{ (square feet)}$					
Adjusted R Square	0.52842						
Standard Error	41.33032						
Observations	10						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	18934.9348	18934.9348	11.0848	0.01039		
Residual	8	13665.5652	1708.1957				
Total	9	32600.5000					
Coefficients							
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386	
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580	

Graphical Presentation (2 of 2)

- House price model: scatter plot and regression line



Interpretation of the Intercept, b_0 Sub 0

$$\widehat{\text{house price}} = [98.24833] + 0.10977 \text{ (square feet)}$$

- b_0 is the estimated average value of Y when the value of X is zero (if $X = 0$ is in the range of observed X values)

— Here, no houses had 0 square feet, so $b_0 = 98.24833$ just indicates that, for houses within the range of sizes observed, \$98,248.33 is the portion of the house price not explained by square feet

Interpretation of the Slope Coefficient, b_1 Sub 1

$$\widehat{\text{house price}} = 98.24833 + [0.10977] (\text{square feet})$$

- b_1 measures the estimated change in the average value of Y as a result of a one-unit change in X
 - Here, $b_1 = .10977$ tells us that the average value of a house increases by $.10977 (\$1000) = \109.77 , on average, for each additional one square foot of size

Section 11.4 Explanatory Power of a Linear Regression Equation

- Total variation is made up of two parts:

$$\text{SST} = \text{SSR} + \text{SSE}$$

Total Sum
of Squares

Regression Sum
of Squares

Error (residual)
Sum of Squares

$$\text{SST} = \sum (y_i - \bar{y})^2 \quad \text{SSR} = \sum (\hat{y}_i - \bar{y})^2 \quad \text{SSE} = \sum (y_i - \hat{y}_i)^2$$

where:

\bar{y} = Average value of the dependent variable

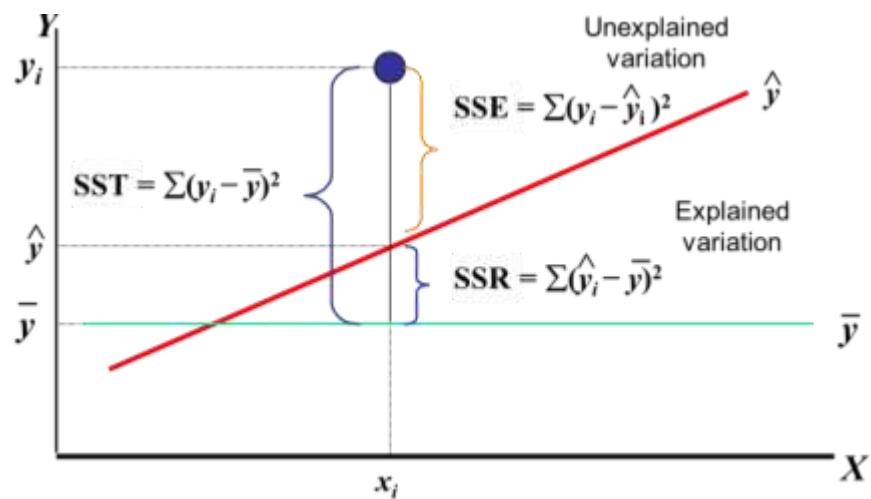
y_i = Observed values of the dependent variable

\hat{y}_i = Predicted value of y for the given x_i value

Analysis of Variance (1 of 2)

- SST = total sum of squares
 - Measures the variation of the y_i values around their mean, \bar{y}
- SSR = regression sum of squares
 - Explained variation attributable to the linear relationship between x and y
- SSE = error sum of squares
 - Variation attributable to factors other than the linear relationship between x and y

Analysis of Variance (2 of 2)



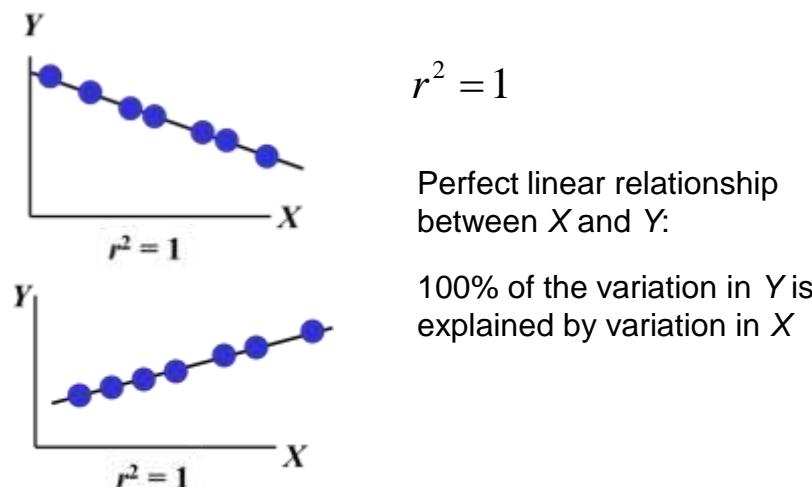
Coefficient of Determination, R Squared

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R -squared and is denoted as R^2

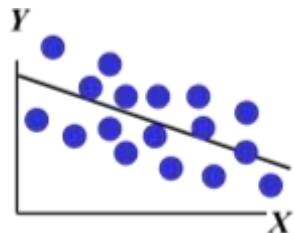
$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

note: $0 \leq R^2 \leq 1$

Examples of Approximate r Squared Values (1 of 3)

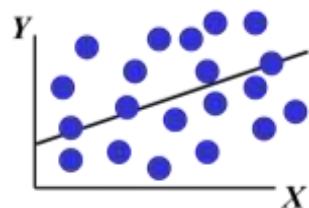


Examples of Approximate r Squared Values (2 of 3)



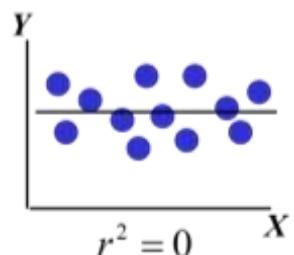
$$0 < r^2 < 1$$

Weaker linear relationships between X and Y :



Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r Squared Values (3 of 3)



$$r^2 = 0$$

No linear relationship between X and Y :

The value of Y does not depend on X . (None of the variation in Y is explained by variation in X)

Excel Output (3 of 6)

Regression Statistics	
Multiple R	0.76211
R Square	0.58082
Adjusted R Square	0.52842
Standard Error	41.33032
Observations	10

ANOVA		df	SS	MS	F	Significance F
Regression		1	18934.9348	18934.9348	11.0848	0.01039
Residual		8	13865.5652	1708.1957		
Total		9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Correlation and R Squared

- The coefficient of determination, R^2 , for a simple regression is equal to the simple correlation squared

$$R^2 = r^2$$

Estimation of Model Error Variance

- An estimator for the variance of the population model error is

$$\hat{\sigma}^2 = s_e^2 = \frac{\sum_{i=1}^n e_i^2}{n-2} = \frac{\text{SSE}}{n-2}$$

- Division by $n - 2$ instead of $n - 1$ is because the simple regression model uses two estimated parameters, b_0 and b_1 , instead of one

$s_e = \sqrt{s_e^2}$ is called the standard error of the estimate

Excel Output (4 of 6)

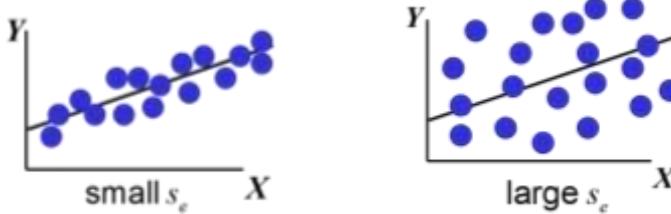
Regression Statistics	
Multiple R	0.76211
R Square	0.58082
Adjusted R Square	0.52842
Standard Error	41.33032
Observations	10

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Comparing Standard Errors

s_e is a measure of the variation of observed y values from the regression line



The magnitude of s_e should always be judged relative to the size of the y values in the sample data

i.e., $s_e = \$41.33K$ is moderately small relative to house prices in the $\$200 - \$300K$ range

Section 11.5 Statistical Inference: Hypothesis Tests and Confidence Intervals

- The variance of the regression slope coefficient (b_1) is estimated by

$$s_{b_1}^2 = \frac{s_e^2}{\sum (x_i - \bar{x})^2} = \frac{s_e^2}{(n-1)s_x^2}$$

where:

s_{b_1} = Estimate of the standard error of the least squares slope

$$s_e = \sqrt{\frac{\text{SSE}}{n-2}} = \text{Standard error of the estimate}$$

Excel Output (5 of 6)

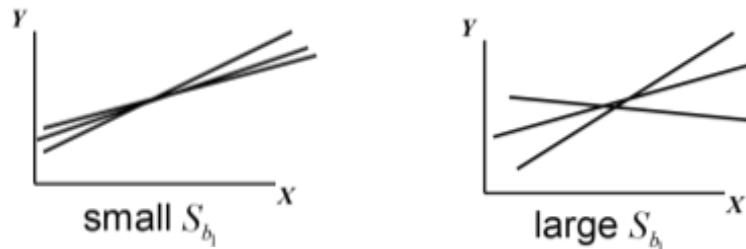
Regression Statistics					
Multiple R	0.76211				
R Square	0.58082				
Adjusted R Square	0.52842				
Standard Error	41.33032				
Observations	10				

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Comparing Standard Errors of the Slope

S_{b_1} is a measure of the variation in the slope of regression lines from different possible samples



Inference About the Slope: *t* Test (1 of 2)

- *t* test for a population slope
 - Is there a linear relationship between X and Y ?
- Null and alternative hypotheses

$$H_0: \beta_1 = 0 \quad (\text{no linear relationship})$$

$$H_1: \beta_1 \neq 0 \quad (\text{linear relationship does exist})$$

- Test statistic

$$t = \frac{b_1 - \beta_1}{s_{b_1}}$$

where:

b_1 = regression slope coefficient

β_1 = hypothesized slope

$$\text{d.f.} = n - 2$$

s_{b_1} = standard error of the slope

Inference About the Slope: *t* Test (2 of 2)

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

$$\widehat{\text{house price}} = 98.25 + 0.1098 (\text{sq.ft.})$$

The slope of this model is 0.1098

Does square footage of the house significantly affect its sales price?

Inferences About the Slope: *t* Test Example (1 of 3)

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

From Excel output:

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

$$t = \frac{b_1 - \beta_1}{s_{b_1}} = \frac{0.10977 - 0}{0.03297} = 3.32938$$

Inferences About the Slope: *t* Test Example (2 of 3)

Test Statistic: $t = 3.329$

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

$$d.f. = 10 - 2 = 8$$

$$t_{8,025} = 2.3060$$

From Excel output:

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

Decision:

Reject H_0

Conclusion:

There is sufficient evidence that square footage affects house price

Inferences About the Slope: *t* Test Example (3 of 3)

P-value = 0.01039

$H_0: \beta_1 = 0$ From Excel output:

$H_1: \beta_1 \neq 0$

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

This is a two-tail test,
so the *p*-value is

$$P(t > 3.329) + P(t < -3.329)$$

$$= 0.01039 \quad \text{(for 8 d.f.)}$$

Decision: *P*-value < α so

Reject H_0

Conclusion:

There is sufficient evidence
that square footage affects
house price

Confidence Interval Estimate for the Slope (1 of 2)

Confidence Interval Estimate of the Slope:

$$b_1 - t_{n-2, \frac{\alpha}{2}} s_{b_1} < \beta_1 < b_1 + t_{n-2, \frac{\alpha}{2}} s_{b_1}$$

$$\text{d.f.} = n - 2$$

Excel Printout for House Prices:

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95% level of confidence, the confidence interval for the slope is (0.0337, 0.1858)

Confidence Interval Estimate for the Slope (2 of 2)

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.70 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

Hypothesis Test for Population Slope Using the *F* Distribution (1 of 2)

- *F* Test statistic:

$$F = \frac{\text{MSR}}{\text{MSE}}$$

where

$$\text{MSR} = \frac{\text{SSR}}{k}$$

$$\text{MSE} = \frac{\text{SSE}}{n - k - 1}$$

where *F* follows an *F* distribution with *k* numerator and $(n - k - 1)$ denominator degrees of freedom

(*k* = the number of independent variables in the regression model)

Hypothesis Test for Population Slope Using the *F* Distribution (2 of 2)

- An alternate test for the hypothesis that the slope is zero:

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

- Use the *F* statistic

$$F = \frac{\text{MSR}}{\text{MSE}} = \frac{\text{SSR}}{s_e^2}$$

- The decision rule is

reject H_0 if $F \geq F_{1,n-2,\alpha}$

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 49

49

Excel Output (6 of 6)

Regression Statistics						
Multiple R	0.76211	$F = \frac{\text{MSR}}{\text{MSE}} = \frac{18934.9348}{1708.1957} = 11.0848$				
R Square	0.58062	With 1 and 8 degrees of freedom				
Adjusted R Square	0.52842					
Standard Error	41.33032					
Observations	10					

ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	18934.9348	18934.9348	11.0848	0.01039	
Residual	8	13665.5652	1708.1957			
Total	9	32600.5000				

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 50

50

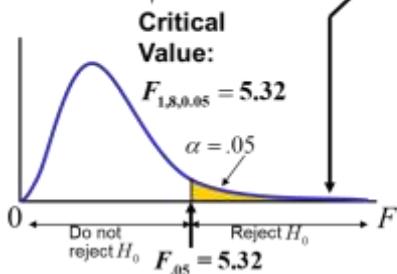
F-Test for Significance

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

$$\alpha = 0.05$$

$$df_1 = 1 \quad df_2 = 8$$



Test Statistic:

$$F = \frac{\text{MSR}}{\text{MSE}} = 11.08$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is sufficient evidence that house size affects selling price

Section 11.6 Prediction

- The regression equation can be used to predict a value for y , given a particular x
- For a specified value, x_{n+1} , the predicted value is

$$\hat{y}_{n+1} = b_0 + b_1 x_{n+1}$$

Predictions Using Regression Analysis

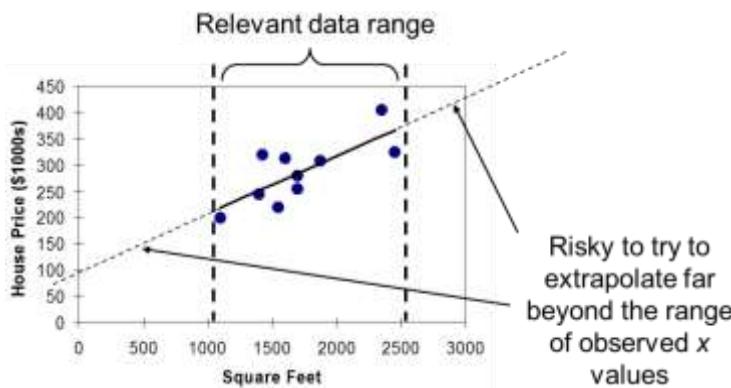
Predict the price for a house with 2000 square feet:

$$\begin{aligned}\widehat{\text{house price}} &= 98.25 + 0.1098 (\text{sq.ft.}) \\ &= 98.25 + 0.1098(2000) \\ &= 317.85\end{aligned}$$

The predicted price for a house with 2000 square feet is $317.85 (\$1,000s) = \$317,850$

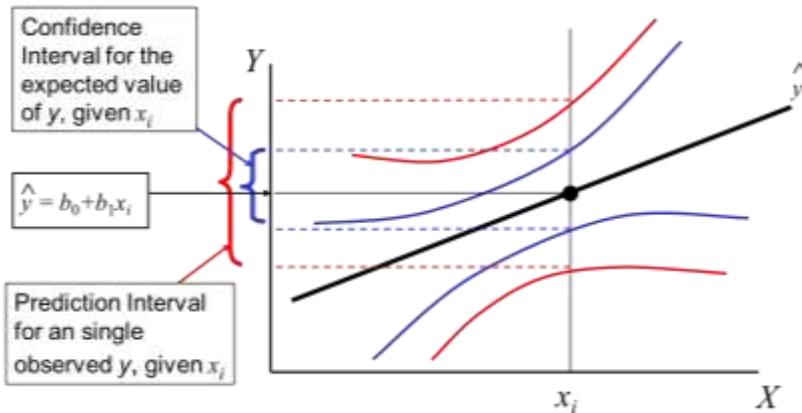
Relevant Data Range

- When using a regression model for prediction, only predict within the relevant range of data



Estimating Mean Values and Predicting Individual Values

Goal: Form intervals around y to express uncertainty about the value of y for a given x_i



Confidence Interval for the Average Y , Given X

Confidence interval estimate for the **expected value of y** given a particular x_i

Confidence interval for $E(Y_{n+1} | X_{n+1})$:

$$\hat{y}_{n+1} \pm t_{n-2, \frac{\alpha}{2}} s_e \sqrt{\left[\frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right]}$$

Notice that the formula involves the term $(x_{n+1} - \bar{x})^2$
so the size of interval varies according to the distance
 x_{n+1} is from the mean, \bar{x}

Prediction Interval for an Individual Y , Given X

Confidence interval estimate for an **actual observed value of y** given a particular x_i

Confidence interval for \hat{y}_{n+1} :

$$\hat{y}_{n+1} \pm t_{n-2, \frac{\alpha}{2}} s_e \sqrt{1 + \frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

This extra term adds to the interval width to reflect the added uncertainty for an individual case

Example: Confidence Interval for the Average Y , Given X (1 of 2)

Confidence Interval Estimate for $E(Y_{n+1} | X_{n+1})$

Find the 95% confidence interval for the mean price of 2,000 square-foot houses

Predicted Price $\hat{y}_i = 317.85$ (\$1,000s)

$$\hat{y}_{n+1} \pm t_{n-2, \frac{\alpha}{2}} s_e \sqrt{\frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}} = 317.85 \pm 37.12$$

The confidence interval endpoints are 280.73 and 354.97, or from \$280,730 to \$354,970

Example: Confidence Interval for the Average Y , Given X (2 of 2)

Confidence Interval Estimate for \hat{y}_{n+1}

Find the 95% confidence interval for an individual house with 2,000 square feet

Predicted Price $\hat{y}_i = 317.85$ (\$1,000s)

$$\hat{y}_{n+1} \pm t_{n-1, \frac{\alpha}{2}} s_e \sqrt{1 + \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}} = 317.85 \pm 102.28$$

The confidence interval endpoints are 215.57 and 420.13, or from \$215,570 to \$420,130

Section 11.7 Correlation Analysis (1 of 2)

- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
 - Correlation is only concerned with strength of the relationship
 - No causal effect is implied with correlation
 - Correlation was first presented in Chapter 4

Section 11.7 Correlation Analysis (2 of 2)

- The population correlation coefficient is denoted ρ (the Greek letter rho)
- The sample correlation coefficient is

$$r = \frac{s_{xy}}{s_x s_y}$$

where

$$s_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

Test for Zero Population Correlation

- To test the null hypothesis of no linear association,

$$H_0 : \rho = 0$$

the test statistic follows the Student's t distribution with $(n - 2)$ degrees of freedom:

$$t = \frac{r \sqrt{(n-2)}}{\sqrt{(1-r^2)}}$$

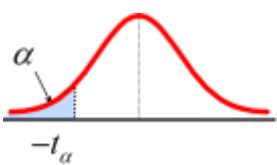
Decision Rules

Hypothesis Test for Correlation

Lower-tail test:

$$H_0: \rho \geq 0$$

$$H_1: \rho < 0$$

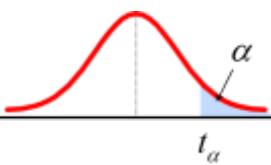


Reject H_0 if $t < -t_{n-2,\alpha}$

Upper-tail test:

$$H_0: \rho \leq 0$$

$$H_1: \rho > 0$$



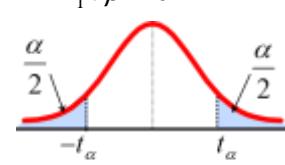
Reject H_0 if $t > t_{n-2,\alpha}$

$$\text{Where } t = \frac{r \sqrt{(n-2)}}{\sqrt{(1-r^2)}} \text{ has } n-2 \text{ d.f.}$$

Two-tail test:

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$



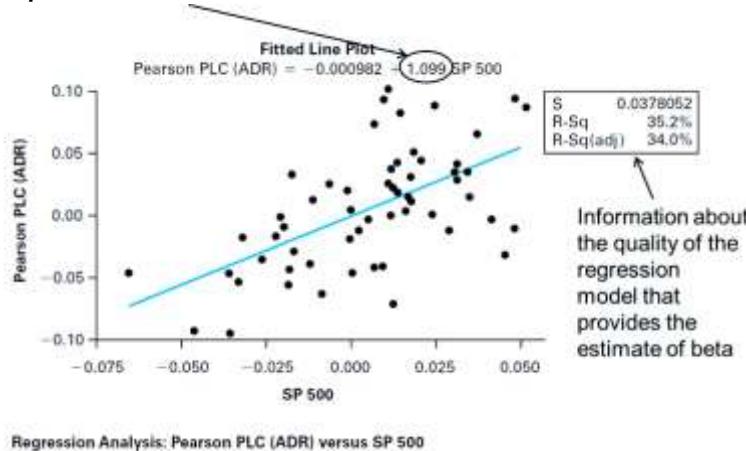
Reject H_0 if $t < -t_{\frac{n-2,\alpha}{2}}$
or $t > t_{\frac{n-2,\alpha}{2}}$

Section 11.8 Beta Measure of Financial Risk

- A Beta Coefficient is a measure of how the returns of a particular firm respond to the returns of a broad stock index (such as the S&P 500)
- For a specific firm, the Beta Coefficient is the slope coefficient from a regression of the firm's returns compared to the overall market returns over some specified time period

Beta Coefficient Example

- Slope coefficient is the Beta Coefficient



 Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 65

65

Section 11.9 Graphical Analysis

- The linear regression model is based on minimizing the sum of squared errors
- If outliers exist, their potentially large squared errors may have a strong influence on the fitted regression line
- Be sure to examine your data graphically for outliers and extreme points
- Decide, based on your model and logic, whether the extreme points should remain or be removed

 Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 66

66

Chapter Summary

- Introduced the linear regression model
- Reviewed correlation and the assumptions of linear regression
- Discussed estimating the simple linear regression coefficients
- Described measures of variation
- Described inference about the slope
- Addressed estimation of mean values and prediction of individual values