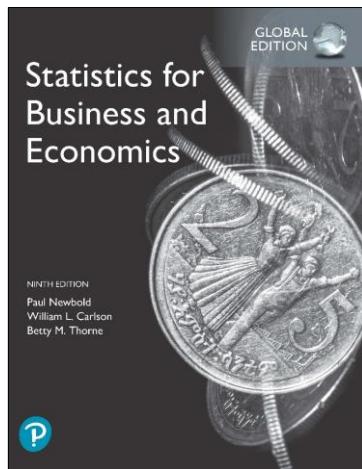


Statistics for Business and Economics

Ninth Edition, Global Edition



Chapter 12

Multiple Regression

 Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 1

1

Chapter Goals

After completing this chapter, you should be able to:

- Apply multiple regression analysis to business decision-making situations
- Analyze and interpret the computer output for a multiple regression model
- Perform a hypothesis test for all regression coefficients or for a subset of coefficients
- Fit and interpret nonlinear regression models
- Incorporate qualitative variables into the regression model by using dummy variables
- Discuss model specification and analyze residuals

 Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

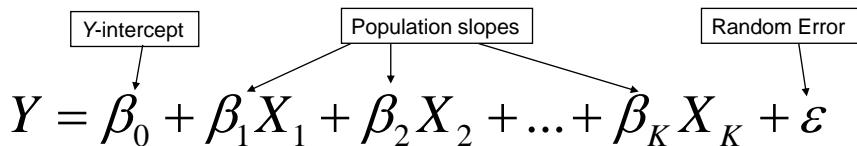
Slide - 2

2

Section 12.1 The Multiple Regression Model

Idea: Examine the linear relationship between
1 dependent (Y) & 2 or more independent variables (X_i)

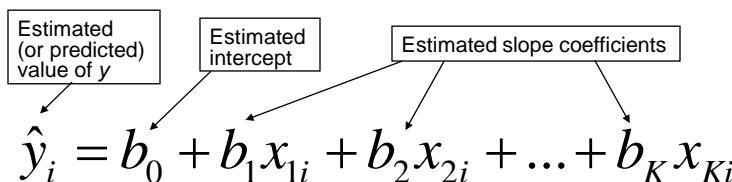
Multiple Regression Model with K Independent Variables:



Multiple Regression Equation

The coefficients of the multiple regression model are estimated using sample data

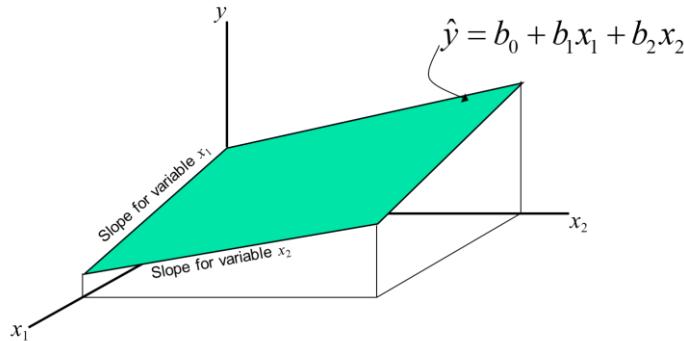
Multiple regression equation with K independent variables:



In this chapter we will always use a computer to obtain the regression slope coefficients and other regression summary measures.

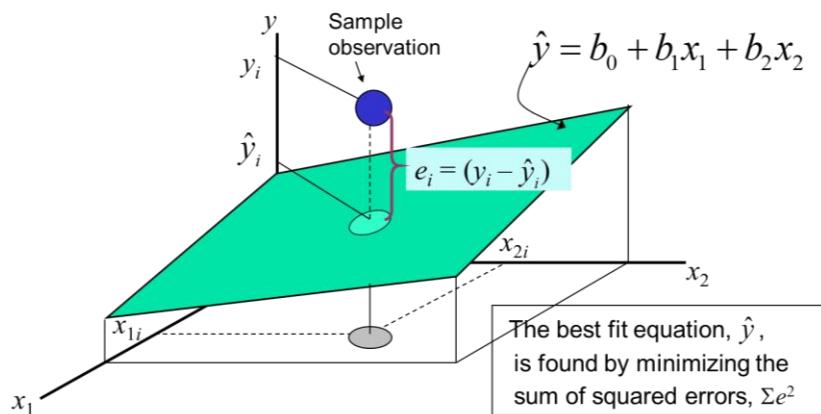
Three Dimensional Graphing (1 of 2)

Two variable model



Three Dimensional Graphing (2 of 2)

Two variable model



Section 12.2 Estimation of Coefficients

Standard Multiple Regression Assumptions

- 1. The x_{ji} terms are fixed numbers, or they are realizations of random variables X_j that are independent of the error terms, ε_i
- 2. The expected value of the random variable Y is a linear function of the independent X_j variables.
- 3. The error terms are normally distributed random variables with mean 0 and a constant variance, σ^2 .

$$E[\varepsilon_i] = 0 \text{ and } E[\varepsilon_i^2] = \sigma^2 \text{ for } (i=1, \dots, n)$$

(The constant variance property is called homoscedasticity)

Standard Multiple Regression Assumptions

- 4. The random error terms, ε_i , are not correlated with one another, so that

$$E[\varepsilon_i \varepsilon_j] = 0 \text{ for all } i \neq j$$

- 5. It is not possible to find a set of numbers, c_0, c_1, \dots, c_k , such that

$$c_0 + c_1 x_{1i} + c_2 x_{2i} + \dots + c_K x_{Ki} = 0$$

(This is the property of no linear relation for the X_j s)

Example 1: 2 Independent Variables

- A distributor of frozen desert pies wants to evaluate factors thought to influence demand
 - Dependent variable: Pie sales (units per week)
 - Independent variables: $\begin{cases} \text{Price (in \$)} \\ \text{Advertising (\$100's)} \end{cases}$
- Data are collected for 15 weeks

Pie Sales Example

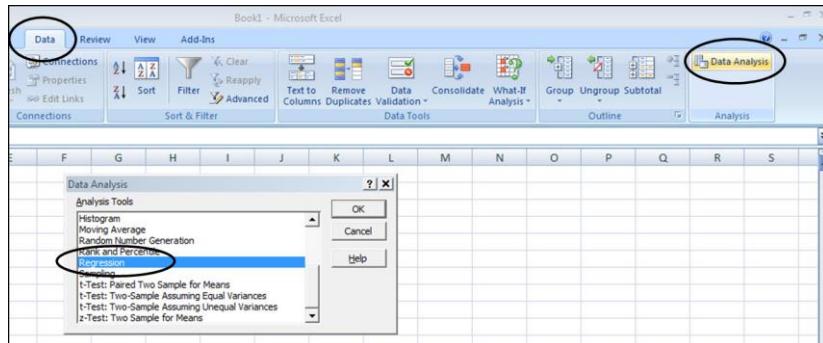
Week	Pie Sales	Price (\$)	Advertising (\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

Multiple regression equation:

$$\widehat{\text{Sales}} = b_0 + b_1 \text{ (Price)} + b_2 \text{ (Advertising)}$$

Estimating a Multiple Linear Regression Equation

- Excel can be used to generate the coefficients and measures of goodness of fit for multiple regression
 - Data / Data Analysis / Regression



Multiple Regression Output

Regression Statistics					
Multiple R	0.72213				
R Square	0.52148				
Adjusted R Square	0.44172				
Standard Error	47.46341				
Observations	15				

ANOVA					
	df	SS	MS	F	Significance F
Regression	2	29460.027	14730.013	6.53861	0.01201
Residual	12	27033.306	2252.776		
Total	14	56493.333			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

The Multiple Regression Equation

$$\widehat{\text{Sales}} = 306.526 - 24.975(\text{Price}) + 74.131(\text{Advertising})$$

where

Sales is in number of pies per week

Price is in \$

Advertising is in \$100's.

$b_1 = -24.975$: sales will decrease, on average, by 24.975 pies per week for each \$1 increase in selling price, net of the effects of changes due to advertising

$b_2 = 74.131$: sales will increase, on average, by 74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price

Section 12.3 Explanatory Power of a Multiple Regression Equation

Coefficient of Determination, R^2

- Reports the proportion of total variation in y explained by all x variables taken together

$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

- This is the ratio of the explained variability to total sample variability

Coefficient of Determination, R Squared

Regression Statistics							
Multiple R	0.72213						
R Square	0.52148						
Adjusted R Square	0.44172						
Standard Error	47.46341						
Observations	15						
$R^2 = \frac{SSR}{SST} = \frac{29460.0}{56493.3} = .52148$							
52.1% of the variation in pie sales is explained by the variation in price and advertising							
ANOVA							
	df	SS	MS	F	Significance F		
Regression	2	29460.027	14730.013	6.53861	0.01201		
Residual	12	27033.306	2252.776				
Total	14	56493.333					
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept		306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price		-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising		74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Estimation of Error Variance

- Consider the population regression model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_K x_{Ki} + \varepsilon_i$$

- The unbiased estimate of the variance of the errors is

$$s_e^2 = \frac{\sum_{i=1}^n e_i^2}{n - K - 1} = \frac{\text{SSE}}{n - K - 1}$$

where $e_i = y_i - \hat{y}_i$

- The square root of the variance, s_e , is called the standard error of the estimate

Standard Error, s_e Sub Epsilon

Regression Statistics						
Multiple R	0.72213					
R Square	0.52148					
Adjusted R Square	0.44172					
Standard Error	47.46341					
Observations	15					

ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Adjusted Coefficient of Determination, R^2 Bar Squared (1 of 2)

- R^2 never decreases when a new X variable is added to the model, even if the new variable is not an important predictor variable
 - This can be a disadvantage when comparing models
- What is the **net effect** of adding a new variable?
 - We lose a degree of freedom when a new X variable is added
 - Did the new X variable add enough explanatory power to offset the loss of one degree of freedom?

Adjusted Coefficient of Determination, R Bar Squared (2 of 2)

- Used to correct for the fact that adding non-relevant independent variables will still reduce the error sum of squares

$$\bar{R}^2 = 1 - \frac{SSE / (n - K - 1)}{SST / (n - 1)}$$

(where n = sample size, K = number of independent variables)

- Adjusted R^2 provides a better comparison between multiple regression models with different numbers of independent variables
- Penalize excessive use of unimportant independent variables
- Value is less than R^2

R Bar Squared

Regression Statistics						
Multiple R	0.72213					
R Square	0.52148					
Adjusted R Square	0.44172					
Standard Error	47.46341					
Observations	15					
$\bar{R}^2 = .44172$ 44.2% of the variation in pie sales is explained by the variation in price and advertising, taking into account the sample size and number of independent variables						
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Coefficient of Multiple Correlation

- The coefficient of multiple correlation is the correlation between the predicted value and the observed value of the dependent variable

$$R = r(\hat{y}, y) = \sqrt{R^2}$$

- Is the square root of the multiple coefficient of determination
- Used as another measure of the strength of the linear relationship between the dependent variable and the independent variables
- Comparable to the correlation between Y and X in simple regression

Section 12.4 Conf. Intervals and Hypothesis Tests for Regression Coefficients

The variance of a coefficient estimate is affected by:

- the sample size
- the spread of the X variables
- the correlations between the independent variables, and
- the model error term

We are typically more interested in the regression coefficients b_j than in the constant or intercept b_0

Confidence Intervals (1 of 2)

Confidence interval limits for the population slope β_j

$$b_j \pm t_{n-K-1, \frac{\alpha}{2}} S_{b_j} \quad \text{where } t \text{ has } (n - K - 1) \text{ d.f.}$$

	Coefficients	Standard Error
Intercept	306.52619	114.25389
Price	-24.97509	10.83213
Advertising	74.13096	25.96732

Here, t has
 $(15 - 2 - 1) = 12$ d.f.

Example: Form a 95% confidence interval for the effect of changes in price (x_1) on pie sales:

$$-24.975 \pm (2.1788)(10.832)$$

So the interval is $-48.576 < \beta_1 < -1.374$

Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 23

23

Confidence Intervals (2 of 2)

Confidence interval for the population slope β_i

	Coefficients	Standard Error	...	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	...	57.58835	555.46404
Price	-24.97509	10.83213	...	-48.57626	-1.37392
Advertising	74.13096	25.96732	...	17.55303	130.70888

Example: Excel output also reports these interval endpoints:

Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of \$1 in the selling price

Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 24

24

Hypothesis Tests

- Use t -tests for individual coefficients
- Shows if a specific independent variable is conditionally important
- Hypotheses:
 - $H_0: \beta_j = 0$ (no linear relationship)
 - $H_1: \beta_j \neq 0$ (linear relationship does exist between x_j and y)

Evaluating Individual Regression Coefficients (1 of 3)

$H_0: \beta_j = 0$ (no linear relationship)

$H_1: \beta_j \neq 0$ (linear relationship does exist between x_i and y)

Test Statistic:

$$t = \frac{b_j - 0}{S_{b_j}} \quad (\text{df} = n - k - 1)$$

Evaluating Individual Regression Coefficients (2 of 3)

Regression Statistics		t-value for Price is $t = -2.306$, with p -value .0398					
Multiple R	0.72213	t-value for Advertising is $t = 2.855$, with p -value .0145					
ANOVA							
Regression	2	29460.027	14730.013	6.53861	0.01201		
Residual	12	27033.306	2252.776				
Total	14	56493.333					
Coefficients							
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404	
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392	
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888	

Example 2: Evaluating Individual Regression Coefficients

$$H_0: \beta_j = 0$$

$$H_1: \beta_j \neq 0$$

$$d.f. = 15 - 2 - 1 = 12$$

$$\alpha = .05$$

$$t_{12, .025} = 2.1788$$

From Excel output:

	Coefficients	Standard Error	t Stat	P-value
Price	-24.97509	10.83213	-2.30565	0.03979
Advertising	74.13096	25.96732	2.85478	0.01449

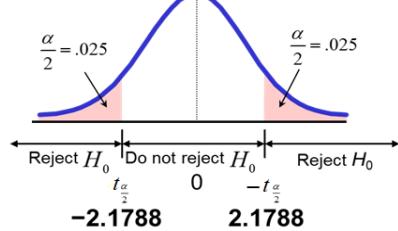
The test statistic for each variable falls in the rejection region (p -values $< .05$)

Decision:

Reject H_0 for each variable

Conclusion:

There is evidence that both Price and Advertising affect pie sales at $\alpha = .05$



Section 12.5 Tests on Regression Coefficients

Tests on All Coefficients

- F -Test for Overall Significance of the Model
- Shows if there is a linear relationship between all of the X variables considered together and Y
- Use F test statistic
- Hypotheses:

$H_0 : \beta_1 = \beta_2 = \dots = \beta_K = 0$ (no linear relationship)

$H_1 : \text{at least one } \beta_i \neq 0$ (at least one independent variable affects Y)

F -Test for Overall Significance (1 of 3)

- Test statistic:

$$F = \frac{\text{MSR}}{s_e^2} = \frac{\text{SSR} / K}{\text{SSE} / (n - K - 1)}$$

where F has K (numerator) and $(n - K - 1)$ (denominator) degrees of freedom

- The decision rule is

$$\text{Reject } H_0 \text{ if } F = \frac{\text{MSR}}{s_e^2} > F_{K, n-K-1, \alpha}$$

F-Test for Overall Significance (2 of 3)

Regression Statistics						
Multiple R	0.72213					
R Square	0.52148					
Adjusted R Square	0.44172					
Standard Error	47.46341					
Observations	15					
$F = \frac{MSR}{MSE} = \frac{14730.0}{2252.8} = 6.5386$						
With 2 and 12 degrees of freedom						
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

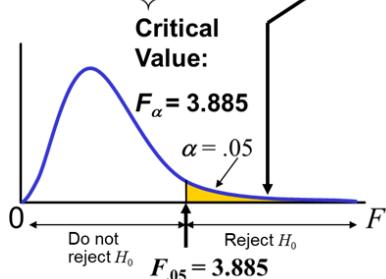
F-Test for Overall Significance (3 of 3)

$$H_0: \beta_1 = \beta_2 = 0$$

$$H_1: \beta_1 \text{ and } \beta_2 \text{ not both zero}$$

$$\alpha = .05$$

$$df_1 = 2 \quad df_2 = 12$$



Test Statistic:

$$F = \frac{MSR}{MSE} = 6.5386$$

Decision:

Since F test statistic is in the rejection region ($p\text{-value} < .05$), reject H_0

Conclusion:

There is evidence that at least one independent variable affects Y

Test on a Subset of Regression Coefficients (1 of 2)

- Consider a multiple regression model involving variables X_j and Z_j , and the null hypothesis that the Z variable coefficients are all zero:

$$y = \beta_0 + \beta_1 x_1 + \cdots + \beta_K x_K + \alpha_1 z_1 + \cdots \alpha_R z_R + \varepsilon$$

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_R = 0$$

$$H_1: \text{at least one of } \alpha_j \neq 0 \ (j = 1, \dots, R)$$

Test on a Subset of Regression Coefficients (2 of 2)

- Goal: compare the error sum of squares for the complete model with the error sum of squares for the restricted model
 - First run a regression for the complete model and obtain SSE
 - Next run a restricted regression that excludes the Z variables (the number of variables excluded is R) and obtain the restricted error sum of squares $SSE(R)$
 - Compute the F statistic and apply the decision rule for a significance level α

$$\text{Reject } H_0 \text{ if } F = \frac{(SSE(R) - SSE) / R}{S_e^2} > F_{R, n-K-R-1, \alpha}$$

Section 12.6 Prediction

- Given a population regression model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_K x_{Ki} + \varepsilon_i \quad (i = 1, 2, \dots, n)$$

- then given a new observation of a data point

$$(x_{1,n+1}, x_{2,n+1}, \dots, x_{K,n+1})$$

the best linear unbiased forecast of \hat{y}_{n+1} is

$$\hat{y}_{n+1} = b_0 + b_1 x_{1,n+1} + b_2 x_{2,n+1} + \cdots + b_K x_{K,n+1}$$

- It is risky to forecast for new X values outside the range of the data used to estimate the model coefficients, because we do not have data to support that the linear model extends beyond the observed range.

Predictions from a Multiple Regression Model

Predict sales for a week in which the selling price is \$5.50 and advertising is \$350:

$$\begin{aligned} \text{Sales} &= 306.526 - 24.975(\text{Price}) + 74.131(\text{Advertising}) \\ &= 306.526 - 24.975(5.50) + 74.131(3.5) \\ &= 428.62 \end{aligned}$$

Predicted sales is
428.62 pies

Note that Advertising is
in \$100's, so \$350
means that $X_2 = 3.5$

Section 12.7 Transformations for Nonlinear Regression Models

- The relationship between the dependent variable and an independent variable may not be linear
- Can review the scatter diagram to check for nonlinear relationships
- Example: Quadratic model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \varepsilon$$

- The second independent variable is the square of the first variable

Quadratic Model Transformations

Quadratic model form:

Let $z_1 = x_1$ and $z_2 = x_1^2$

And specify the model as

$$y_i = \beta_0 + \beta_1 z_{1i} + \beta_2 z_{2i} + \varepsilon_i$$

- where:

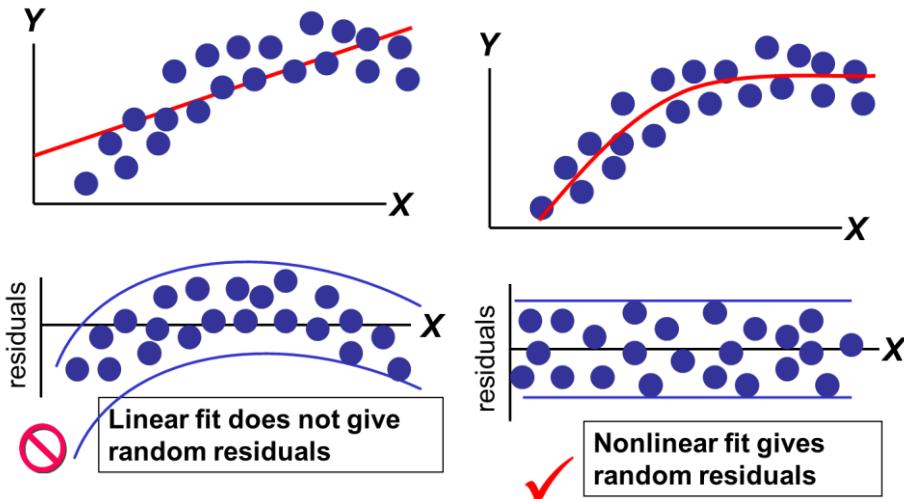
β_0 = Y intercept

β_1 = regression coefficient for linear effect of X on Y

β_2 = regression coefficient for quadratic effect on Y

ε_i = random error in Y for observation i

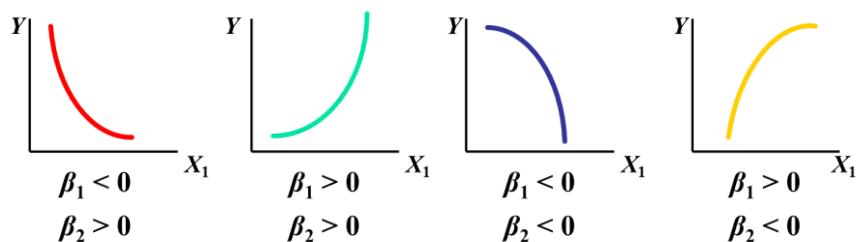
Linear vs. Nonlinear Fit



Quadratic Regression Model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{1i}^2 + \varepsilon_i$$

Quadratic models may be considered when the scatter diagram takes on one of the following shapes:



β_1 = the coefficient of the linear term

β_2 = the coefficient of the squared term

Testing for Significance: Quadratic Effect (1 of 3)

- Testing the Quadratic Effect

 - Compare the linear regression estimate

$$\hat{y} = b_0 + b_1 x_1$$

 - with quadratic regression estimate

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_1^2$$

 - Hypotheses

 - $H_0: \beta_2 = 0$ (The quadratic term does not improve the model)
 - $H_1: \beta_2 \neq 0$ (The quadratic term improves the model)

Testing for Significance: Quadratic Effect (2 of 3)

- Testing the Quadratic Effect

Hypotheses

 - $H_0: \beta_2 = 0$ (The quadratic term does not improve the model)
 - $H_1: \beta_2 \neq 0$ (The quadratic term improves the model)

- The test statistic is

where:

$$t = \frac{b_2 - \beta_2}{S_{b_2}}$$

b_2 = squared term slope coefficient

β_2 = hypothesized slope (zero)

S_{b_2} = standard error of the slope

$$d.f = n - 3$$

Testing for Significance: Quadratic Effect (3 of 3)

- Testing the Quadratic Effect

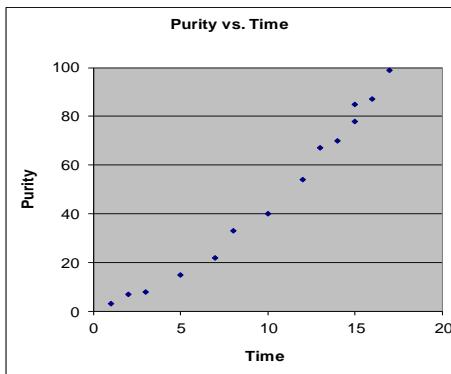
Compare R^2 from simple regression to \bar{R}^2 from the quadratic model

- If \bar{R}^2 from the quadratic model is larger than R^2 from the simple model, then the quadratic model is a better model

Example 3: Quadratic Model (1 of 3)

Purity	Filter Time
3	1
7	2
8	3
15	5
22	7
33	8
40	10
54	12
67	13
70	14
78	15
85	15
87	16
99	17

- Purity increases as filter time increases:



Example 3: Quadratic Model (2 of 3)

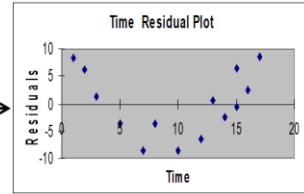
- Simple regression results:

$$\hat{y} = -11.283 + 5.985 \text{ Time}$$

	Coefficients	Standard Error	t Stat	P-value
Intercept	-11.28267	3.46805	-3.25332	0.00691
Time	5.98520	0.30966	19.32819	2.078E-10

Regression Statistics		F	Significance F
R Square	0.96888	373.57904	2.0778E-10
Adjusted R Square	0.96628		
Standard Error	6.15997		

t statistic, *F* statistic, and *R*² are all high, but the residuals are not random:



Example 3: Quadratic Model (3 of 3)

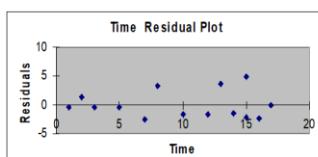
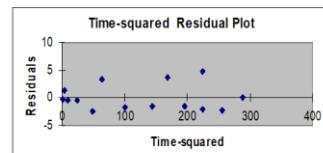
- Quadratic regression results:

$$\hat{y} = 1.539 + 1.565 \text{ Time} + 0.245 (\text{Time})^2$$

	Coefficients	Standard Error	t Stat	P-value
Intercept	1.53870	2.24465	0.68550	0.50722
Time	1.56496	0.60179	2.60052	0.02467
Time-squared	0.24516	0.03258	7.52406	1.165E-05

Regression Statistics		F	Significance F
R Square	0.99494	1080.7330	2.368E-13
Adjusted R Square	0.99402		
Standard Error	2.59513		

The quadratic term is significant and improves the model: *R*² is higher and *s*_e is lower, residuals are now random



Logarithmic Transformations

The Exponential Model:

- Original exponential model

$$Y = \beta_0 X_1^{\beta_1} X_2^{\beta_2} \varepsilon$$

- Transformed logarithmic model

$$\log(Y) = \log(\beta_0) + \beta_1 \log(X_1) + \beta_2 \log(X_2) + \log(\varepsilon)$$

Interpretation of coefficients

For the logarithmic model:

$$\log Y_i = \log \beta_0 + \beta_1 \log X_{1i} + \log \varepsilon_i$$

- When both dependent and independent variables are logged:
 - The estimated coefficient b_k of the independent variable X_k can be interpreted as a 1 percent change in X_k leads to an estimated b_k percentage change in the average value of Y
 - b_k is the elasticity of Y with respect to a change in X_k

Section 12.8 Dummy Variables for Regression Models

- A dummy variable is a categorical independent variable with two levels:
 - yes or no, on or off, male or female
 - recorded as 0 or 1
- Regression intercepts are different if the variable is significant
- Assumes equal slopes for other variables
- If more than two levels, the number of dummy variables needed is (number of levels - 1)

Dummy Variable Example (1 of 2)

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2$$

Let:

y = Pie Sales

x_1 = Price

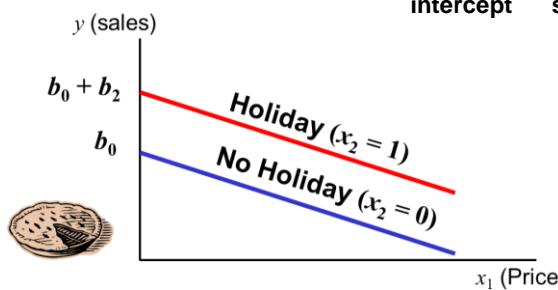
x_2 = Holiday ($x_2 = 1$ if a holiday occurred during the week)
($x_2 = 0$ if there was no holiday that week)

Dummy Variable Example (2 of 2)

$$\hat{y} = b_0 + b_1 x_1 + b_2 (1) = \boxed{b_0 + b_2} + \boxed{b_1 x_1} \quad \text{Holiday}$$

$$\hat{y} = b_0 + b_1 x_1 + b_2 (0) = \boxed{b_0} + \boxed{b_1 x_1} \quad \text{No Holiday}$$

Different intercept
Same slope



If $H_0 : \beta_2 = 0$ is rejected, then "Holiday" has a significant effect on pie sales

Interpreting the Dummy Variable Coefficient

Example: Sales = 300 – 30(Price) + 15(Holiday)

Sales: number of pies sold per week

Price: pie price in \$

Holiday : $\begin{cases} 1 & \text{If a holiday occurred during the week} \\ 0 & \text{If no holiday occurred} \end{cases}$

$b_2 = 15$: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

Differences in Slope

- Hypothesizes interaction between pairs of x variables
 - Response to one x variable may vary at different levels of another x variable
- Contains two-way cross product terms

$$\begin{aligned}
 \text{— } \hat{y} &= b_0 + b_1 x_1 + b_2 x_2 + b_3(x_3) \\
 &= b_0 + b_1 x_1 + b_2 x_2 + b_3(x_1 x_2)
 \end{aligned}$$

Effect of Interaction

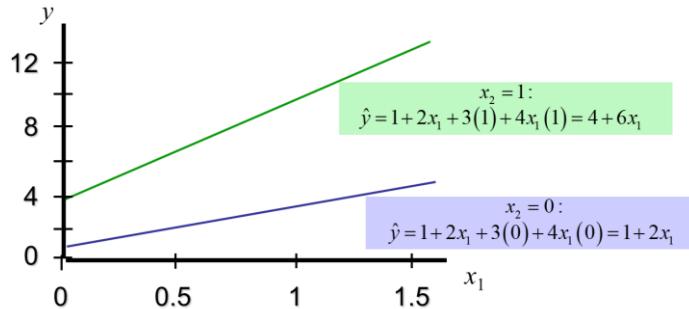
- Given:

$$\begin{aligned}
 Y &= \beta_0 + \beta_2 X_2 + (\beta_1 + \beta_3 X_2) X_1 \\
 &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2
 \end{aligned}$$

- Without interaction term, effect of X_1 on Y is measured by β_1
- With interaction term, effect of X_1 on Y is measured by $\beta_1 + \beta_3 X_2$
- Effect changes as X_2 changes

Interaction Example

Suppose x_2 is a dummy variable and the estimated regression equation is $\hat{y} = 1 + 2x_1 + 3x_2 + 4x_1x_2$



Slopes are different if the effect of x_1 on y depends on x_2 value

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 55

55

Significance of Interaction Term

- The coefficient b_3 is an estimate of the difference in the coefficient of x_1 when $x_2 = 1$ compared to when $x_2 = 0$
- The t statistic for b_3 can be used to test the hypothesis

$$H_0: \beta_3 = 0 \mid \beta_1 \neq 0, \beta_2 \neq 0$$

$$H_1: \beta_3 \neq 0 \mid \beta_1 \neq 0, \beta_2 \neq 0$$

- If we reject the null hypothesis we conclude that there is a difference in the slope coefficient for the two subgroups

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 56

56

Section 12.9 Multiple Regression Analysis Application Procedure

Errors (residuals) from the regression model:

$$e_i = (y_i - \hat{y}_i)$$

Assumptions:

- The errors are normally distributed
- Errors have a constant variance
- The model errors are independent

Analysis of Residuals

- These residual plots are used in multiple regression:
 - Residuals vs. \hat{y}_i
 - Residuals vs. x_{1i}
 - Residuals vs. x_{2i}
 - Residuals vs. time (if time series data)

Use the residual plots to check for violations of regression assumptions

Chapter Summary

- Developed the multiple regression model
- Tested the significance of the multiple regression model
- Discussed adjusted $R^2(\bar{R}^2)$
- Tested individual regression coefficients
- Tested portions of the regression model
- Used quadratic terms and log transformations in regression models
- Explained dummy variables
- Evaluated interaction effects
- Discussed using residual plots to check model assumptions