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Chapter Goals

After completing this chapter, you should be able to:

• Apply multiple regression analysis to business decision-

making situations

• Analyze and interpret the computer output for a multiple 

regression model

• Perform a hypothesis test for all regression coefficients or 

for a subset of coefficients

• Fit and interpret nonlinear regression models

• Incorporate qualitative variables into the regression model 

by using dummy variables

• Discuss model specification and analyze residuals

1

2



11/7/2023

2

Copyright © 2020 Pearson Education Ltd. All Rights Reserved. Slide - 3

Section 12.1 The Multiple Regression 

Model

Idea: Examine the linear relationship between

1 dependent (Y) & 2 or more independent variables ( )iX

Multiple Regression Model with K Independent Variables:

0 1 1 2 2 ... K KY X X X    = + + + + +

Y-intercept Population slopes Random Error
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Multiple Regression Equation

The coefficients of the multiple regression model are 

estimated using sample data

Multiple regression equation with K independent variables:

Estimated 
(or predicted) 
value of y

Estimated slope coefficientsEstimated
intercept

0 1 1 2 2
ˆ ...i i i K Kiy b b x b x b x= + + + +

In this chapter we will always use a computer to obtain the 

regression slope coefficients and other regression summary 

measures.
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Three Dimensional Graphing (1 of 2)

Two variable model
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Three Dimensional Graphing (2 of 2)

Two variable model
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Section 12.2 Estimation of 

Coefficients

Standard Multiple Regression Assumptions

• 1. The jix terms are fixed numbers, or they are realizations

of random variables jX that are independent of the error

terms, i

• 2. The expected value of the random variable Y is a linear

function of the independent jX variables.

• 3. The error terms are normally distributed random

variables with mean 0 and a constant variance,
2.

  ( )2 20        1,...,i iE E i n   = = = and for

(The constant variance property is called homoscedasticity)
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Standard Multiple Regression 

Assumptions

• 4. The random error terms, ,i are not correlated with

one another, so that

0  i jE i j   =   for all

• 5. It is not possible to find a set of numbers,

0 1, ,..., ,kc c c such that

0 1 1 2 2 ... 0i i K Kic c x c x c x+ + + + =

(This is the property of no linear relation for the )jX s
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Example 1: 2 Independent Variables

• A distributor of frozen desert pies wants to 

evaluate factors thought to influence demand

– Dependent variable: Pie sales (units per week)

– Independent variables:
Price (in $)

Advertising ($100’s)

• Data are collected for 15 weeks
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Pie Sales Example

Week

Pie 

Sales

Price

($)

Advertising

($100s)

1 350 5.50 3.3

2 460 7.50 3.3

3 350 8.00 3.0

4 430 8.00 4.5

5 350 6.80 3.0

6 380 7.50 4.0

7 430 4.50 3.0

8 470 6.40 3.7

9 450 7.00 3.5

10 490 5.00 4.0

11 340 7.20 3.5

12 300 7.90 3.2

13 440 5.90 4.0

14 450 5.00 3.5

15 300 7.00 2.7

Multiple regression equation:

0 1Sales  (Price)b b= +

2  (Advertising)b+
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Estimating a Multiple Linear 

Regression Equation

• Excel can be used to generate the coefficients and 

measures of goodness of fit for multiple regression

– Data / Data Analysis / Regression
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Multiple Regression Output
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The Multiple Regression Equation
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Section 12.3 Explanatory Power of a 

Multiple Regression Equation

Coefficient of Determination, 2
R

• Reports the proportion of total variation in y explained by 

all x variables taken together

2 SSR regression sum of squares

SST total sum of squares
R = =

• This is the ratio of the explained variability to total sample 

variability
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Coefficient of Determination, R 

Squared
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Estimation of Error Variance

• Consider the population regression model

0 1 1 2 2i i i K Ki iy x x x    = + + + + +

• The unbiased estimate of the variance of the errors is

2

2 1 SSE

1 1

n

i

i
e

e

s
n K n K

== =
− − − −



where ˆ
i i ie y y= −

• The square root of the variance, ,es is called the

standard error of the estimate
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Standard Error, s Sub Epsilon
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Adjusted Coefficient of 

Determination, R Bar Squared (1 of 2)

•  2R never decreases when a new X variable is
added to the model, even if the new variable is not 

an important predictor variable

– This can be a disadvantage when comparing 

models

• What is the net effect of adding a new variable?

– We lose a degree of freedom when a new X 
variable is added

– Did the new X variable add enough 
explanatory power to offset the loss of one 
degree of freedom?
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Adjusted Coefficient of 

Determination, R Bar Squared (2 of 2)

• Used to correct for the fact that adding non-relevant 

independent variables will still reduce the error sum of 

squares

( )

( )
2

SSE / 1
1

SST / 1

n K
R

n

− −
= −

−

(where n = sample size, K = number of independent variables)

– Adjusted
2R provides a better comparison between

multiple regression models with different numbers of 

independent variables

– Penalize excessive use of unimportant independent 

variables

– Value is less than
2R
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R Bar Squared
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Coefficient of Multiple Correlation

• The coefficient of multiple correlation is the correlation 

between the predicted value and the observed value of the 

dependent variable

( ) 2ˆ,R r y y R= =

• Is the square root of the multiple coefficient of 

determination

• Used as another measure of the strength of the linear 

relationship between the dependent variable and the 

independent variables

• Comparable to the correlation between Y and X in simple 

regression
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Section 12.4 Conf idence. Intervals and Hypothesis 

Tests for Regression Coefficients

The variance of a coefficient estimate is

affected by:

• the sample size

• the spread of the X variables

• the correlations between the independent variables, and

• the model error term

We are typically more interested in the regression

coefficients
jb than in the constant or intercept 0b

21
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Confidence Intervals (1 of 2)

Confidence interval limits for the population slope j

1,
2

jj b
n K

b t S
− −


where t has (n − K − 1) d.f.

Here, t has

(15 − 2 − 1) = 12 d.f.

Example: Form a 95% confidence interval for the effect of

changes in price ( )1x on pie sales:

( )( )24.975 2.1788 10.832− 

So the interval is 148.576 1.374−   −
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Confidence Intervals (2 of 2)

Confidence interval for the population slope i

Example: Excel output also reports these interval endpoints:

Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies 

for each increase of $1 in the selling price
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Hypothesis Tests

• Use t-tests for individual coefficients

• Shows if a specific independent variable is 

conditionally important

• Hypotheses:

–  
0 : 0jH  = (no linear relationship)

–  
1 : 0jH   (linear relationship does exist

between
jx and y)
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Evaluating Individual Regression 

Coefficients (1 of 3)

0 : 0jH  = (no linear relationship)

1 : 0jH   (linear relationship does exist

between ix and y)

Test Statistic:

0

j

j

b

b
t

S

−
= ( )df 1n k= − −
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Evaluating Individual Regression 

Coefficients (2 of 3)
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Example 2: Evaluating Individual 

Regression Coefficients

0 : 0jH  =

1 : 0jH  

From Excel output:

12,.025

d.f. 15 2 1 12

.05

2.1788

= − − =

=

=



t
The test statistic for each variable falls 

in the rejection region (p-values < .05)

Decision:

Reject 0H for each variable

Conclusion:

There is evidence that both 

Price and Advertising affect

pie sales at .05=
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Section 12.5 Tests on Regression 

Coefficients

Tests on All Coefficients

• F-Test for Overall Significance of the Model

• Shows if there is a linear relationship between all 

of the X variables considered together and Y

• Use F test statistic

• Hypotheses:

0 1 2: ... 0KH   = = = = (no linear relationship)

1 :  0iH  at least one (at least one independent 

variable affects Y)
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F-Test for Overall Significance (1 of 3)

• Test statistic:

( )2

MSR SSR /

SSE / 1e

K
F

s n K
= =

− − 

where F has K (numerator) and

(n − K − 1) (denominator)

degrees of freedom

• The decision rule is

Reject 0H if , 1,2

MSR
K n K

e

F F
s

− −= 
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F-Test for Overall Significance (2 of 3)
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F-Test for Overall Significance (3 of 3)

0 1 2: 0H  = =

1 1 2:   H  and not both zero

Test Statistic:

MSR
6.5386

MSE
F = =

Decision:

Since F test statistic is in 

the rejection region

(p-value < .05), reject 0H

Conclusion:
There is evidence that at least one 

independent variable affects Y
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Test on a Subset of Regression 

Coefficients (1 of 2)

• Consider a multiple regression model involving

variables   ,j jX Zand and the null hypothesis that the Z

variable coefficients are all zero:

0 1 1 1 1K K R Ry x x z z     = + + + + + +

0 1 2: 0RH   = = = =

1 :H at least one of ( )0 1, ,j j R  =
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Test on a Subset of Regression 

Coefficients (2 of 2)

• Goal: compare the error sum of squares for the complete 

model with the error sum of squares for the restricted 

model

– First run a regression for the complete model and obtain S  S E

– Next run a restricted regression that excludes the Z variables (the 

number of variables excluded is R) and obtain the restricted error 

sum of squares S  S E(R)

– Compute the F statistic and apply the decision rule for a

significance level 

( )( )
0 , 1,2

SSE R SSE / R
  R n K R

e

H F F
s

− − −

−
= Reject if

33
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Section 12.6 Prediction

• Given a population regression model

( )0 1 1 2 2  1, 2, ,i i i K Ki iy x x x i n    = + + + + + =

• then given a new observation of a data point

( )1, 1, 2, 1 , 1,...,n n K nx x x+ + +

the best linear unbiased forecast of 1
ˆ

ny + is

1 0 1 1, 1 2 2, 1 , 1
ˆ

n n n K K ny b b x b x b x+ + + += + + + +

• It is risky to forecast for new X values outside the range of the data used to 

estimate the model coefficients, because we do not have data to support that 

the linear model extends beyond the observed range.
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Predictions from a Multiple 

Regression Model

Predict sales for a week in which the selling price is 

$5.50 and advertising is $350:

35
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Section 12.7 Transformations for 

Nonlinear Regression Models

• The relationship between the dependent variable 

and an independent variable may not be linear

• Can review the scatter diagram to check for non-

linear relationships

• Example: Quadratic model

2

0 1 1 2 1Y X X   = + + +

– The second independent variable is the square of the 

first variable
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Quadratic Model Transformations

Quadratic model form:

Let
2

1 1 2 1  z x z x= =and

And specify the model as

0 1 1 2 2i i i iy z z   = + + +

• where:

0 = Y intercept

1 = regression coefficient for linear effect of X on Y

2 = regression coefficient for quadratic effect on Y

i = random error in Y for observation i

37
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Linear vs. Nonlinear Fit
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Quadratic Regression Model

2

0 1 1 2 1i i i iY X X   = + + +

Quadratic models may be considered when the scatter 

diagram takes on one of the following shapes:

1 = the coefficient of the linear term

2 = the coefficient of the squared term

39
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Testing for Significance: Quadratic 

Effect (1 of 3)

• Testing the Quadratic Effect

– Compare the linear regression estimate

0 1 1ŷ b b x= +

– with quadratic regression estimate

2

0 1 1 2 1ŷ b b x b x= + +

– Hypotheses

▪  0 2: 0H  = (The quadratic term does not improve the model)

▪  1 2: 0H   (The quadratic term improves the model)
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Testing for Significance: Quadratic 

Effect (2 of 3)

• Testing the Quadratic Effect

Hypotheses

–  0 2: 0H  = (The quadratic term does not improve the model)

–  1 2: 0H   (The quadratic term improves the model)

• The test statistic is

2

2 2

b

b
t

S

−
=

where:

2b = squared term slope 

coefficient

2 = hypothesized slope (zero)

2bS = standard error of the slope

d.f 3n= −

41
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Testing for Significance: Quadratic 

Effect (3 of 3)

• Testing the Quadratic Effect

Compare 2R from simple regression to
2R from the quadratic model

• If 2R from the quadratic model is larger than
2R from the simple model, then the

quadratic model is a better model
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Example 3: Quadratic Model (1 of 3)

• Purity increases as filter 

time increases:
Purity Filter Time

3 1

7 2

8 3

15 5

22 7

33 8

40 10

54 12

67 13

70 14

78 15

85 15

87 16

99 17

0

20

40

60

80

100

0 5 10 15 20

P
u

ri
ty

Time

Purity vs. Time
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Example 3: Quadratic Model (2 of 3)

• Simple regression results:
ˆ 11.283 5.985 Timey = − +
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Example 3: Quadratic Model (3 of 3)

• Quadratic regression results:
2ˆ 1.539 1.565 Time 0.245 (Time)y = + +
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Logarithmic Transformations

The Exponential Model:

• Original exponential model

1 2

0 1 2Y X X
  =

• Transformed logarithmic model

( ) ( ) ( ) ( ) ( )0 1 1 2 2log log log log logY X X   = + + +
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Interpretation of coefficients

For the logarithmic model:

0 1 1log log log logi i iY X  = + +

• When both dependent and independent variables 

are logged:

– The estimated coefficient kb of the independent

variable kX can be interpreted as

a 1 percent change in kX leads to an estimated
kb

percentage change in the average value of Y

–  
kb is the elasticity of Y with respect to a change in kX

47
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Section 12.8 Dummy Variables for 

Regression Models

• A dummy variable is a categorical independent 

variable with two levels:

– yes or no, on or off, male or female

– recorded as 0 or 1

• Regression intercepts are different if the variable 

is significant

• Assumes equal slopes for other variables

• If more than two levels, the number of dummy 

variables needed is (number of levels - 1)
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Dummy Variable Example (1 of 2)

0 1 1 2 2ŷ b b x b x= + +

Let:

y = Pie Sales

1x = Price

2x = Holiday 2( 1x = if a holiday occurred during the week)

2( 0x = if there was no holiday that week)

49
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Dummy Variable Example (2 of 2)

( ) ( )0 1 1 2 0 2 1 1
ˆ 1  y b b x b b b b x= + + = + + Holiday

( )0 1 1 2 0 1 1
ˆ 0  y b b x b b b x= + + = + No Holiday

Different 

intercept

Same 

slope

If 0 2: 0 H  = is

rejected, then 

“Holiday” has a 

significant effect 

on pie sales
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Interpreting the Dummy Variable 

Coefficient

Example: Sales = 300 − 30(Price) + 15(Holiday)

Sales: number of pies sold per week

Price: pie price in $

1 If  a holiday occurred during the week
Holiday

0 If  no holiday occurred





:

2 15 :b = on average, sales were 15 pies greater in
weeks with a holiday than in weeks without a 

holiday, given the same price

51
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Differences in Slope

• Hypothesizes interaction between pairs of x 

variables

– Response to one x variable may vary at 

different levels of another x variable

• Contains two-way cross product terms

–  0 1 1 2 2 3 3ŷ b b x b x b x= + + +

( )0 1 1 2 2 3 1 2b b x b x b x x= + + +
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Effect of Interaction

• Given:

( )0 2 2 1 3 2 1

0 1 1 2 2 3 1 2

Y X X X

X X X X

   

   

= + + +

= + + +

• Without interaction term, effect of 1X on Y is

measured by 1

• With interaction term, effect of 1X on Y is

measured by 1 3 2X +

• Effect changes as 2X changes

53
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Interaction Example

Suppose 2x is a dummy variable and the estimated

regression equation is 1 2 1 2
ˆ 1 2 3 4y x x x x= + + +

Slopes are different if the effect of
1x on y depends on

2x value
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Significance of Interaction Term

• The coefficient
3b is an estimate of the difference

in the coefficient of
1x when

2 1x = compared to

when 2 0x =

• The t statistic for
3b can be used to test the

hypothesis

0 3 1 2

1 3 1 2

: 0 0, 0

: 0 0, 0

H

H

  

  

=  

  

• If we reject the null hypothesis we conclude that there is a 

difference in the slope coefficient for the two subgroups
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Section 12.9 Multiple Regression 

Analysis Application Procedure

Errors (residuals) from the regression model:

( )ˆi i ie y y= −

Assumptions:

• The errors are normally distributed

• Errors have a constant variance

• The model errors are independent
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Analysis of Residuals

• These residual plots are used in multiple 

regression:

– Residuals vs. ˆ
iy

– Residuals vs. 1ix

– Residuals vs.
2ix

– Residuals vs. time (if time series data)

Use the residual plots to check for 

violations of regression assumptions
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Chapter Summary

• Developed the multiple regression model

• Tested the significance of the multiple regression model

• Discussed adjusted 2 2( )R R

• Tested individual regression coefficients

• Tested portions of the regression model

• Used quadratic terms and log transformations in 

regression models

• Explained dummy variables

• Evaluated interaction effects

• Discussed using residual plots to check model 

assumptions
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