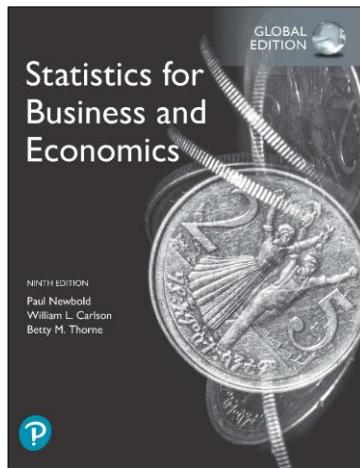


Statistics for Business and Economics

Ninth Edition, Global Edition



Chapter 13

Additional Topics in Regression Analysis

 Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 1

1

Chapter Goals

After completing this chapter, you should be able to:

- Explain regression model-building methodology
- Apply dummy variables for categorical variables with more than two categories
- Explain how dummy variables can be used in experimental design models
- Incorporate lagged values of the dependent variable as regressors
- Describe specification bias and multicollinearity
- Examine residuals for heteroscedasticity and autocorrelation

 Pearson

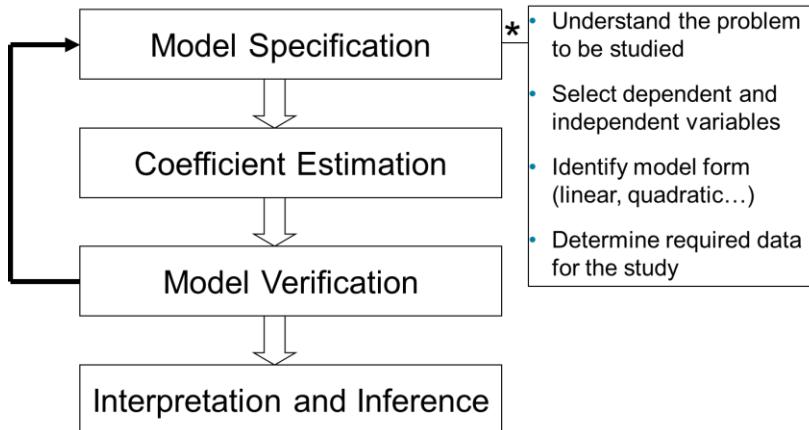
Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 2

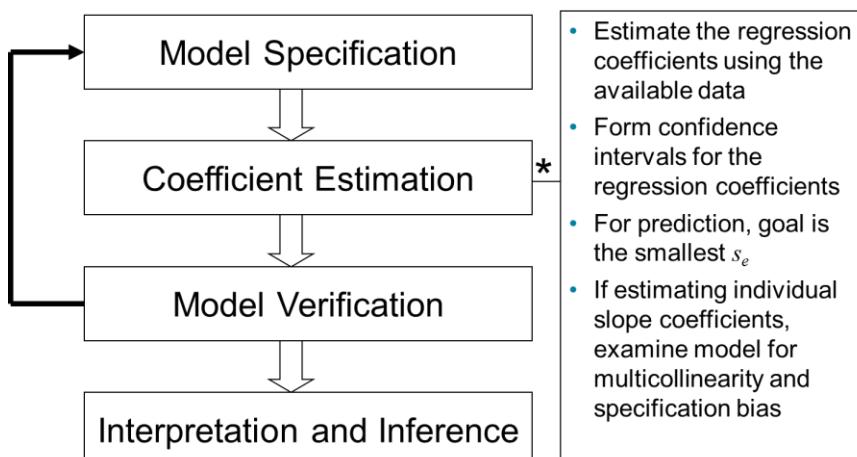
2

Section 13.1 Model-Building Methodology

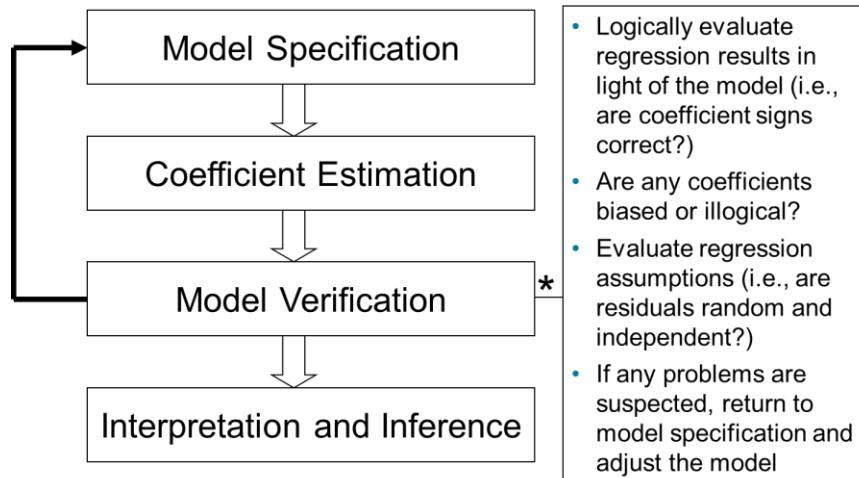
The Stages of Statistical Model Building



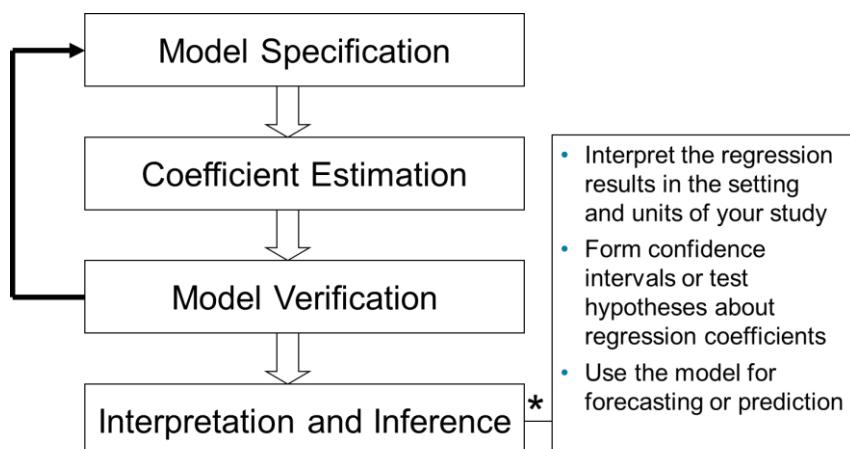
The Stages of Model Building (1 of 3)



The Stages of Model Building (2 of 3)



The Stages of Model Building (3 of 3)



Section 13.2 Dummy Variables and Experimental Design

- Dummy variables can be used in situations in which the categorical variable of interest has more than two categories
- Dummy variables can also be useful in experimental design
 - Experimental design is used to identify possible causes of variation in the value of the dependent variable
 - Outcomes are measured at specific combinations of levels for treatment and blocking variables
 - The goal is to determine how the different treatments influence the Y outcome

Dummy Variable Models (More Than 2 Levels) (1 of 2)

- Consider a categorical variable with K levels
- The number of dummy variables needed is **one less than the number of levels, $K - 1$**
- Example:

$y = \text{house price} ; x_1 = \text{square feet}$

- If style of the house is also thought to matter:

Style = ranch, split level, condo

Three levels, so two dummy variables are needed

Dummy Variable Models (More Than 2 Levels) (2 of 2)

- Example: Let “condo” be the default category, and let x_2 and x_3 be used for the other two categories:

y = house price

x_1 = square feet

x_2 = 1 if ranch, 0 otherwise

x_3 = 1 if split level, 0 otherwise

The multiple regression equation is:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

Interpreting the Dummy Variable Coefficients (with 3 Levels)

Consider the regression equation:

$$\hat{y} = 20.43 + 0.045x_1 + 23.53x_2 + 18.84x_3$$

For a condo: $x_2 = x_3 = 0$

$$\hat{y} = 20.43 + 0.045x_1$$

For a ranch: $x_2 = 1; x_3 = 0$

$$\hat{y} = 20.43 + 0.045x_1 + 23.53$$

For a split level: $x_2 = 0; x_3 = 1$

$$\hat{y} = 20.43 + 0.045x_1 + 18.84$$

With the same square feet, a ranch will have an estimated average price of 23.53 thousand dollars more than a condo

With the same square feet, a split-level will have an estimated average price of 18.84 thousand dollars more than a condo.

Experimental Design (1 of 2)

- Consider an experiment in which
 - four treatments will be used, and
 - the outcome also depends on three environmental factors that cannot be controlled by the experimenter
- Let variable z_1 denote the treatment, where $z_1 = 1, 2, 3$, or 4. Let z_2 denote the environment factor (the “blocking variable”), where $z_2 = 1, 2$, or 3
- To model the four treatments, three dummy variables are needed
- To model the three environmental factors, two dummy variables are needed

Experimental Design (2 of 2)

- Define five dummy variables, x_1, x_2, x_3, x_4 , and x_5
- Let treatment level 1 be the default ($z_1 = 1$)
 - Define $x_1 = 1$ if $z_1 = 2$, $x_1 = 0$ otherwise
 - Define $x_2 = 1$ if $z_1 = 3$, $x_2 = 0$ otherwise
 - Define $x_3 = 1$ if $z_1 = 4$, $x_3 = 0$ otherwise
- Let environment level 1 be the default ($z_2 = 1$)
 - Define $x_4 = 1$ if $z_2 = 2$, $x_4 = 0$ otherwise
 - Define $x_5 = 1$ if $z_2 = 3$, $x_5 = 0$ otherwise

Experimental Design: Dummy Variable Tables

- The dummy variable values can be summarized in a table:

Z_1	X_1	X_2	X_3
1	0	0	0
2	1	0	0
3	0	1	0
4	0	0	1

Z_2	X_4	X_5
1	0	0
2	1	0
3	0	1

Experimental Design Model

- The experimental design model can be estimated using the equation

$$\hat{y}_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \varepsilon$$

- The estimated value for β_2 , for example, shows the amount by which the y value for treatment 3 exceeds the value for treatment 1

Section 13.3 Lagged Values of the Dependent Variable

- In time series models, data is collected over time (weekly, quarterly, etc...)
- The value of y in time period t is denoted y_t
- The value of y_t often depends on the value y_{t-1} , as well as other independent variables x_j :

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \dots + \beta_K x_{Kt} + \gamma y_{t-1} + \varepsilon_t$$

A lagged value of the dependent variable is included as an explanatory variable

Interpreting Results in Lagged Models (1 of 3)

- An increase of 1 unit in the independent variable x_j in time period t (all other variables held fixed), will lead to an expected increase in the dependent variable of
 - β_j in period t
 - $\beta_j \gamma$ in period $(t+1)$
 - $\beta_j \gamma^2$ in period $(t+2)$
 - $\beta_j \gamma^3$ in period $(t+3)$ and so on
- The total expected increase over all current and future time periods is $\frac{\beta_j}{(1-\gamma)}$
- The coefficients $\beta_0, \beta_1, \dots, \beta_K, \gamma$ are estimated by least squares in the usual manner

Interpreting Results in Lagged Models (2 of 3)

- Confidence intervals and hypothesis tests for the regression coefficients are computed the same as in ordinary multiple regression
 - (When the regression equation contains lagged variables, these procedures are only approximately valid. The approximation quality improves as the number of sample observations increases.)

Interpreting Results in Lagged Models (3 of 3)

- Caution should be used when using confidence intervals and hypothesis tests with time-series data
 - There is a possibility that the equation errors ε_i are no longer independent from one another.
 - When errors are correlated the coefficient estimates are unbiased, but not efficient. Thus confidence intervals and hypothesis tests are no longer valid.

Section 13.4 Specification Bias

- Suppose an important independent variable z is omitted from a regression model
- If z is uncorrelated with all other included independent variables, the influence of z is left unexplained and is absorbed by the error term, ε
- But if there is any correlation between z and any of the included independent variables, some of the influence of z is captured in the coefficients of the included variables

Specification Bias

- If some of the influence of omitted variable z is captured in the coefficients of the included independent variables, then those coefficients are biased...
- ...and the usual inferential statements from hypothesis test or confidence intervals can be seriously misleading
- In addition the estimated model error will include the effect of the missing variable(s) and will be larger

Section 13.5 Multicollinearity

- Collinearity: High correlation exists among two or more independent variables
- This means the correlated variables contribute redundant information to the multiple regression model

Multicollinearity

- Including two highly correlated explanatory variables can adversely affect the regression results
 - No new information provided
 - Can lead to unstable coefficients (large standard error and low t -values)
 - Coefficient signs may not match prior expectations

Indicators of Multicollinearity

- Coefficients differ from the values expected by theory or experience, or have incorrect signs
- Coefficients of variables believed to be a strong influence have small t statistics indicating that their values do not differ from 0
- All the coefficient student t statistics are small, indicating no individual effect, but the overall F statistic indicates a strong effect for the total regression model
- High correlations exist between individual independent variables or one or more of the independent variables have a strong linear regression relationship to the other independent variables or a combination of both

Detecting Multicollinearity

- Examine the simple correlation matrix to determine if strong correlation exists between any of the model independent variables
- Look for a large change in the value of a previous coefficient when a new variable is added to the model
- Does a previously significant variable become insignificant when a new independent variable is added?
- Does the estimate of the standard deviation of the model increase when a variable is added to the model?

Corrections for Multicollinearity

- Remove one or more of the highly correlated independent variables. But, as shown in Section 13.4, this might lead to a bias in coefficient estimation.
- Change the model specification, including possibly a new independent variable that is a function of several correlated independent variables.
- Obtain additional data that do not have the same strong correlations between the independent variables.

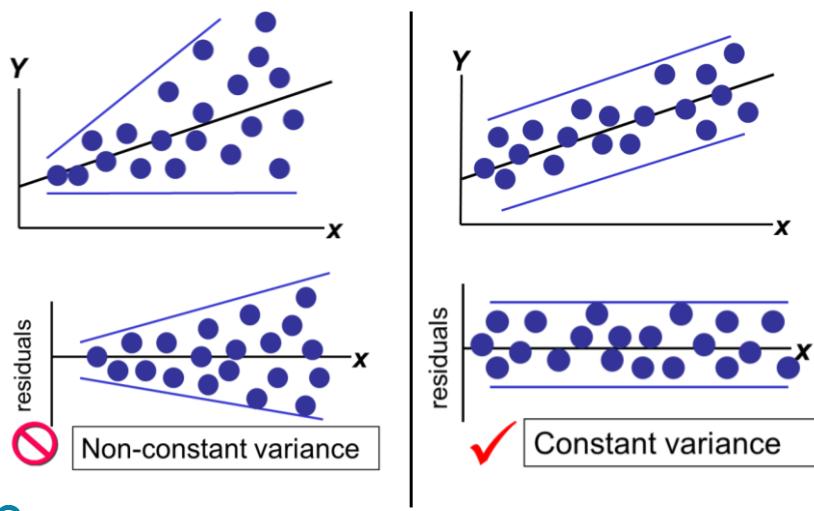
Section 13.6 Heteroscedasticity

- Homoscedasticity
 - The probability distribution of the errors has constant variance
- Heteroscedasticity
 - The error terms do not all have the same variance
 - The size of the error variances may depend on the size of the dependent variable value, for example

Heteroscedasticity (2 of 2)

- When heteroscedasticity is present:
 - least squares is not the most efficient procedure to estimate regression coefficients
 - The usual procedures for deriving confidence intervals and tests of hypotheses is not valid

Residual Analysis for Homoscedasticity



Tests for Heteroscedasticity

- To test the null hypothesis that the error terms, ε_i , all have the same variance against the alternative that their variances depend on the expected values \hat{y}_i
- Estimate the simple regression $e_i^2 = a_0 + a_1 \hat{y}_i$
- Let R^2 be the coefficient of determination of this new regression

The null hypothesis is rejected if nR^2 is greater than $\chi^2_{1,\alpha}$

- where $\chi^2_{1,\alpha}$ is the critical value of the chi-square random variable with 1 degree of freedom and probability of error α

Section 13.7 Autocorrelated Errors

- Independence of Errors
 - Error values are statistically independent
- Autocorrelated Errors
 - Residuals in one time period are related to residuals in another period

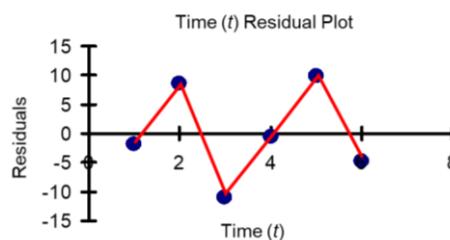
Autocorrelated Errors

- Autocorrelation violates a least squares regression assumption
 - Leads to s_b estimates that are too small (i.e., biased)
 - Thus t -values are too large and some variables may appear significant when they are not

Autocorrelation

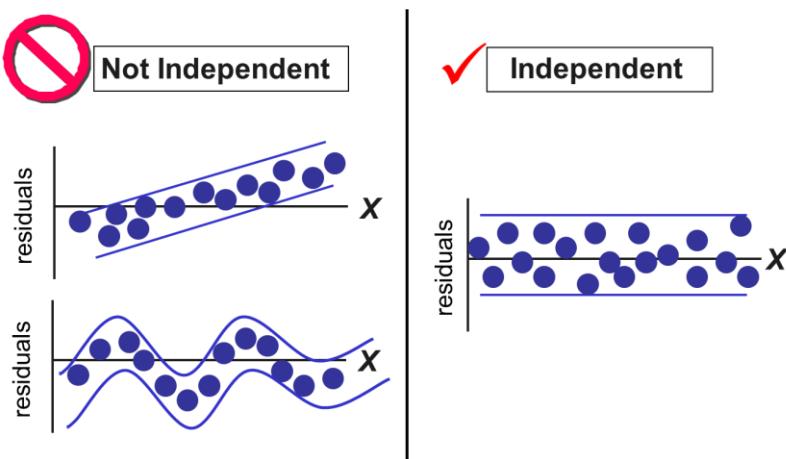
- Autocorrelation is correlation of the errors (residuals) over time

- Here, residuals show a cyclic pattern, not random



- Violates the regression assumption that residuals are random and independent

Residual Analysis for Independence



The Durbin-Watson Statistic (1 of 2)

- The Durbin-Watson statistic is used to test for autocorrelation

H_0 : successive residuals are not correlated

(i.e., $\text{Corr}(\varepsilon_t, \varepsilon_{t-1}) = 0$)

H_1 : autocorrelation is present

The Durbin-Watson Statistic (2 of 2)

$H_0 : \rho = 0$ (no autocorrelation)

$H_1 : \text{autocorrelation is present}$

- The Durbin-Watson test statistic (d):

$$d = \frac{\sum_{t=2}^n (e_t - e_{t-1})^2}{\sum_{t=1}^n e_t^2}$$

- The possible range is $0 \leq d \leq 4$
- d should be close to 2 if H_0 is true
- d less than 2 may signal positive autocorrelation,
- d greater than 2 may signal negative autocorrelation

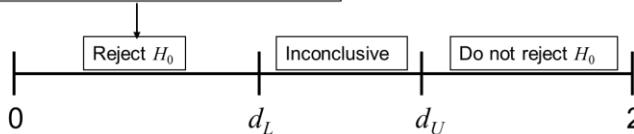
Testing for Positive Autocorrelation (1 of 3)

$H_0 : \text{positive autocorrelation does not exist}$

$H_1 : \text{positive autocorrelation is present}$

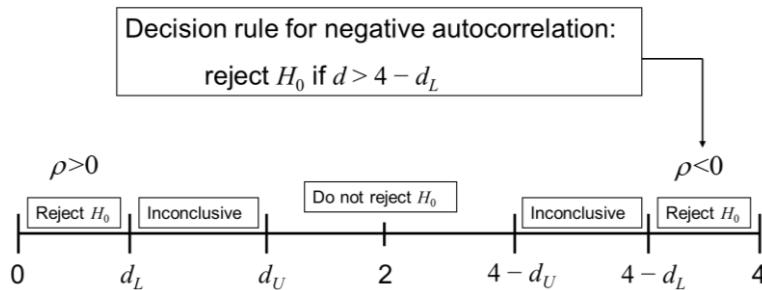
- Calculate the Durbin-Watson test statistic = d
 - d can be approximated by $d = 2(1 - r)$, where r is the sample correlation of successive errors
- Find the values d_L and d_U from the Durbin-Watson table
 - (for sample size n and number of independent variables K)

Decision rule: reject H_0 if $d < d_L$



Negative Autocorrelation

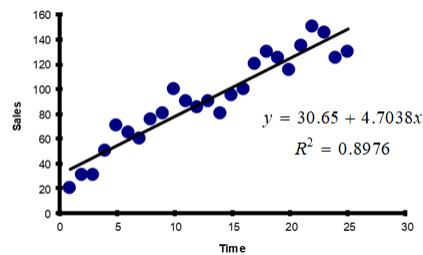
- Negative autocorrelation exists if successive errors are negatively correlated
 - This can occur if successive errors alternate in sign



Testing for Positive Autocorrelation (2 of 3)

- Example with $n = 25$:

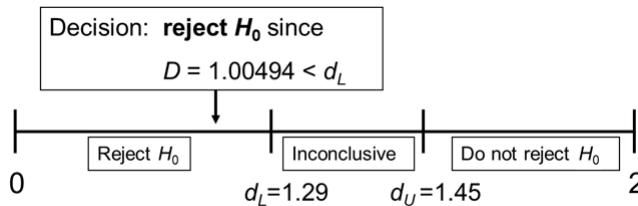
Durbin-Watson Calculations	
Sum of Squared Difference of Residuals	3296.18
Sum of Squared Residuals	3279.98
Durbin-Watson Statistic	1.00494



$$d = \frac{\sum_{t=2}^n (e_t - e_{t-1})^2}{\sum_{t=1}^n e_t^2} = \frac{3296.18}{3279.98} = 1.00494$$

Testing for Positive Autocorrelation (3 of 3)

- Here, $n = 25$ and there is $K = 1$ independent variable
- Using the Durbin-Watson table, $d_L = 1.29$ and $d_U = 1.45$
- $D = 1.00494 < d_L = 1.29$, so reject H_0 and conclude that significant positive autocorrelation exists
- Therefore the linear model is not the appropriate model to forecast sales



Estimation of Regression Models with Autocorrelated Errors (1 of 2)

- Suppose that we want to estimate the coefficients of the regression model

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \cdots + \beta_k x_{kt} + \varepsilon_t$$

where the error term ε_t is autocorrelated

- Two steps:
 - (i) Estimate the model by least squares, obtaining the Durbin-Watson statistic, d , and then estimate the autocorrelation parameter using

$$r = 1 - \frac{d}{2}$$

Estimation of Regression Models with Autocorrelated Errors (2 of 2)

(ii) Estimate by least squares a second regression with

- dependent variable $(y_t - ry_{t-1})$
- independent variables $(x_{1t} - rx_{1,t-1}), (x_{2t} - rx_{2,t-1}), \dots, (x_{Kt} - rx_{K,t-1})$

- The parameters $\beta_1, \beta_2, \dots, \beta_k$ are estimated regression coefficients from the second model
- An estimate of β_0 is obtained by dividing the estimated intercept for the second model by $(1-r)$
- Hypothesis tests and confidence intervals for the regression coefficients can be carried out using the output from the second model

Chapter Summary

- Discussed regression model building
- Introduced dummy variables for more than two categories and for experimental design
- Used lagged values of the dependent variable as regressors
- Discussed specification bias and multicollinearity
- Described heteroscedasticity
- Defined autocorrelation and used the Durbin-Watson test to detect positive and negative autocorrelation