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Sampling and 
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Distributions
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Chapter Goals

After completing this chapter, you should be able to:

• Describe a simple random sample and why sampling is 

important

• Explain the difference between descriptive and inferential 

statistics

• Define the concept of a sampling distribution

• Determine the mean and standard deviation for the

sampling distribution of the sample mean, X

• Describe the Central Limit Theorem and its importance

• Determine the mean and standard deviation for the

sampling distribution of the sample proportion, p̂

• Describe sampling distributions of sample variances
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Introduction

• Descriptive statistics

– Collecting, presenting, and describing data

• Inferential statistics

– Drawing conclusions and/or making decisions 

concerning a population based only on sample 

data
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Inferential Statistics (1 of 2)

• Making statements about a population by 

examining sample results
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Inferential Statistics (2 of 2)

Drawing conclusions and/or making decisions 

concerning a population based on sample results.

• Estimation

– e.g., Estimate the population 

mean weight using the sample 

mean weight

• Hypothesis Testing

– e.g., Use sample evidence 

to test the claim that the 

population mean weight is 

120 pounds
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Section 6.1 Sampling from a 

Population

• A Population is the set of all items or individuals 

of interest
– Examples: All likely voters in the next election

All parts produced today

All sales receipts for November

• A Sample is a subset of the population

– Examples: 1000 voters selected at random for interview

A few parts selected for destructive testing

Random receipts selected for audit
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Population vs. Sample
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Why Sample?

• Less time consuming than a census

• Less costly to administer than a census

• It is possible to obtain statistical results of a 

sufficiently high precision based on samples.
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Simple Random Sample

• Every object in the population has the same probability of 

being selected

• Objects are selected independently

• Samples can be obtained from a table of random numbers 

or computer random number generators

• A simple random sample is the ideal against which other 

sampling methods are compared

Copyright © 2020 Pearson Education Ltd. All Rights Reserved. Slide - 10

Sampling Distributions

• A sampling distribution is a probability 

distribution of all of the possible values of a 

statistic for a given size sample selected 

from a population
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Developing a Sampling 

Distribution (1 of 6)

• Assume there is a population …

• Population size N=4

• Random variable, X, is 

age of individuals

• Values of X: 18, 20, 22, 

24 (years)
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Developing a Sampling 

Distribution (2 of 6)

In this example the Population Distribution is uniform:
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Developing a Sampling 

Distribution (3 of 6)

Now consider all possible samples of size n = 2

Copyright © 2020 Pearson Education Ltd. All Rights Reserved. Slide - 14

Developing a Sampling 

Distribution (4 of 6)

Sampling Distribution of All Sample Means
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Chapter Outline
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Section 6.2 Sampling Distributions of 

Sample Means
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Sample Mean

• Let
1 2, ,..., nX X X represent a random sample from a

population

• The sample mean value of these observations is defined as

1

1 n

i

i

X X
n =

= 
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Standard Error of the Mean

• Different samples of the same size from the same 

population will yield different sample means

• A measure of the variability in the mean from sample to 

sample is given by the Standard Error of the Mean:

X
n

=




• Note that the standard error of the mean decreases as the 

sample size increases
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Comparing the Population with Its 

Sampling Distribution

Population

4N =

21 2.236 = =

Sample Means Distribution

2n =
21 1.58

X X
= = 
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Developing a Sampling 

Distribution (5 of 6)

Summary Measures for the Population Distribution:

18 20 22 24
21

4

iX

N


=

+ + +
= =



2( )
2.236iX

N

 −
= =



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Developing a Sampling 

Distribution (6 of 6)

Summary Measures of the Sampling Distribution:

18 19 21 24
( ) 21

16

iX
E X

N

 + + + +
= = = = 

2

2 2 2

( )

(18 21) (19 21) (24 21)
1.58

16

i
x

X

N

 −
=

− + − + + −
= =



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If Sample Values Are Not Independent

• If the sample size n is not a small fraction of the population 

size N, then individual sample members are not distributed 

independently of one another

• Thus, observations are not selected independently

• A finite population correction is made to account for this:

2

1 1
X

N n N n
Var X

n N Nn

− −
= =

− −
( ) or

 


The term
( )

( 1)

N n

N

−

−
is often called a finite population correction factor
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If the Population Is Normal

• If a population is normal with mean  and
standard deviation , the sampling distribution of
X is also normally distributed with

X X
n

= =and


  

• If the sample size n is not large relative to the population size N, then

1
X X

N n

Nn

−
= =

−
and


  
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Standard Normal Distribution for the 

Sample Means

• Z-value for the sampling distribution of :X

X

X X
z

n

− −
= =

 



where: X = sample mean

 = population mean

X
= standard error of the mean

Z is a standardized normal random variable with mean of 0 and a 

variance of 1
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Sampling Distribution Properties (1 of 3)

E X  =  

.(   )i.e is unbiasedX

(both distributions have the same mean)
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Sampling Distribution Properties (2 of 3)

X
n

=




.(   )i.e is unbiasedX

(the distribution of X

has a reduced standard deviation)
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Sampling Distribution Properties (3 of 3)

As n increases,

X
 decreases
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Central Limit Theorem (1 of 3)

• Even if the population is not normal,

• …sample means from the population will be 

approximately normal as long as the sample size 

is large enough.
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Central Limit Theorem (2 of 3)

• Let
1 2, ,..., nX X X be a set of n independent random

variables having identical distributions with mean
, variance 2 ,  X and as the mean of these random

variables.

• As n becomes large, the central limit theorem states that 

the distribution of

x

X

X
Z





−
=

approaches the standard normal distribution
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Central Limit Theorem (3 of 3)

As the sample size gets large enough…

the sampling distribution becomes almost normal 

regardless of shape of population
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If the Population Is Not Normal

Sampling distribution 

properties:

Central Tendency

X
 =

Variation

X
n


 =
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How Large Is Large Enough?

• For most distributions, n > 25 will give a sampling 

distribution that is nearly normal

• For normal population distributions, the sampling 

distribution of the mean is always normally 

distributed
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Example 1 (1 of 3)

• Suppose a large population has mean 8 = and

standard deviation 3. = suppose a random

sample of size n = 36 is selected.

• What is the probability that the sample mean is 

between 7.8 and 8.2?
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Example 1 (2 of 3)

Solution:

• Even if the population is not normally distributed, 

the central limit theorem can be used (n > 25)

• … so the sampling distribution of X is

approximately normal

• … with mean 8
X

 =

• …and standard deviation
3

0.5
36

X
n


 = = =

33
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Example 1 (3 of 3)

Solution: (continued):

7.8 8 8.2 8
(7.8 8.2)

3 3

36 36

x
xP P

n

 




 
 −− −

  =   
 
 
 

( 0.4 0.4) 0.3108P Z= −   =
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Acceptance Intervals

• Goal: determine a range within which sample means are 

likely to occur, given a population mean and variance

– By the Central Limit Theorem, we know that the distribution of X

is approximately normal if n is large enough, with mean  and

standard deviation
X


– Let

2

z be the z-value that leaves area
2


in the upper tail of the

normal distribution (i.e., the interval

2 2

z z − to encloses probability

1 )−

– Then

2

X
z 

is the interval that includes X with probability 1 −
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Section 6.3 Sampling Distributions of 

Sample Proportions
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Sampling Distributions of Sample 

Proportions

P = the proportion of the population having some 

characteristic

• Sample proportion ˆ( )p provides an estimate of P:

number of itemsin thesample having thecharacteristicof interest
ˆ

samplesize

X
p

n
= =

•  ˆ0   1p 

•  p̂ has a binomial distribution, but can be approximated

by a normal distribution when 5( )1Pn P− 

37

38



9/19/2023

20

Copyright © 2020 Pearson Education Ltd. All Rights Reserved. Slide - 39

Sampling Distribution of p Hat

• Normal approximation:

Properties:
ˆ

(1 )
ˆ( ) p

P P
E p P

n


−
= =and

(where P = population proportion)
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Z-Value for Proportions

Standardize p̂ to a Z value with the formula:

ˆ

ˆ ˆ

(1 )p

p P p P
Z

P P

n



− −
= =

−

Where the distribution of Z is a good approximation

to the standard normal distribution if ( )1 5nP P− 
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Example 2 (1 of 3)

• If the true proportion of voters who support 

Proposition A is P = 0.4, what is the probability 

that a sample of size 200 yields a sample 

proportion between 0.40 and 0.45?

• i.e.: if P = 0.4 and n = 200, what is

( )ˆ0.40 0.45 ?P p 
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Example 2 (2 of 3)

• if P = 0.4 and n = 200, what is

( )ˆ0.40 0.45 ?P p 

Find ˆ :p
ˆ

(1 ) .4(1 .4)
.03464

200
p

P P

n


− −
= = =

Convert to 

standard 

normal:

.40 .40 .45 .40
(.40 .45)

.03464 .03464

(0 1.44

ˆ

)

P

P

pP Z

Z

− − 
  =   

 

=  

41

42



9/19/2023

22

Copyright © 2020 Pearson Education Ltd. All Rights Reserved. Slide - 43

Example 2 (3 of 3)

• if P = 0.4 and n = 200, what is

( )ˆ0.40 0.45 ?P p 

Use standard normal table: ( )0 1.44 .4251P Z  =
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Section 6.4 Sampling Distributions of 

Sample Variances
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Sample Variance

• Let 1 2, ,..., nx x x be a random sample from a

population. The sample variance is

2 2

1

1
( )

1

n

i

i

s x x
n =

= −
−


• the square root of the sample variance is called 

the sample standard deviation

• the sample variance is different for different 

random samples from the same population
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Sampling Distribution of Sample 

Variances

• The sampling distribution of
2s has mean

2

2 2( )E s =

• If the population distribution is normal, then

4
2 2

( )
1

Var s
n


=

−

45
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Chi-Square Distribution of Sample 

and Population Variances

• If the population distribution is normal then

2
2

1 2

( 1)
n

n s



−

−
=

has a chi-square 2( ) distribution

with n − 1 degrees of freedom
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The Chi-Square Distribution

• The chi-square distribution is a family of distributions, 

depending on degrees of freedom:

• d.f. = n − 1

• Text Appendix Table 7 contains chi-square probabilities
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Degrees of Freedom (df)

Idea: Number of observations that are free to vary after 

sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, n = 3, so degrees of freedom = n − 1 = 3 − 1 = 2

(2 values can be any numbers, but the third is not free to vary for a given 

mean)
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Chi-Square Example (1 of 2)

• A commercial freezer must hold a selected temperature 

with little variation. Specifications call for a standard 

deviation of no more than 4 degrees
2   16 ( .)a variance of degrees

• A sample of 14 freezers is to be tested

• What is the upper limit (K) for 

the sample variance such that 

the probability of exceeding this 

limit, given that the population 

standard deviation is 4, is less 

than 0.05?
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Finding the Chi-Square Value

2
2

2

( 1)n s




−
=

Is chi-square distributed with ( 1 13)n − =

degrees of freedom

• Use the the chi-square distribution with area 0.05 in the 

upper tail:

.05   14 1 13  . .22.36 ( ) = − ==2

13
and d f
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Chi-Square Example (2 of 2)

22.36 ( .05 14 1 13 . .)= = − =2

13
 and d f

So:
2

2 2

13

( 1)
( ) 0.05

16

n s
P s K P 

 −
 =  = 

 

or ( 1)
22.36

16

n K−
= (where n = 14)

so
(22.36)(16)

27.52
(14 1)

K = =
−

If
2 s from the sample of size n = 14 is greater than 27.52, there is

strong evidence to suggest the population variance exceeds 16.
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Chapter Summary

• Introduced sampling distributions

• Described the sampling distribution of sample means

– For normal populations

– Using the Central Limit Theorem

• Described the sampling distribution of sample proportions

• Introduced the chi-square distribution

• Examined sampling distributions for sample variances

• Calculated probabilities using sampling distributions
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