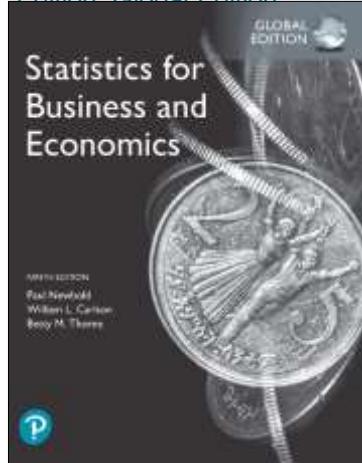


Statistics for Business and Economics

Ninth

Edition, Global Edition



Chapter 9

Hypothesis Testing: Single Population

 Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 1

1

Chapter Goals

After completing this chapter, you should be able to:

- Formulate null and alternative hypotheses for applications involving
 - a single population mean from a normal distribution
 - a single population proportion (large samples)
 - the variance of a normal distribution
- Formulate a decision rule for testing a hypothesis
- Know how to use the critical value and p -value approaches to test the null hypothesis (for both mean and proportion problems)
- Define Type I and Type II errors and assess the power of a test
- Use the chi-square distribution for tests of the variance of a normal distribution

 Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 2

2

Section 9.1 Concepts of Hypothesis Testing

- A hypothesis is a claim (assumption) about a population parameter:
 - population mean

Example: The mean monthly cell phone bill of this city is $\mu = \$52$

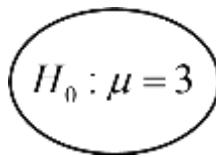
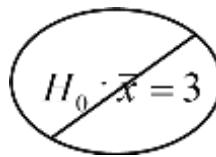
- population proportion

Example: The proportion of adults in this city with cell phones is $P = .88$

The Null Hypothesis, H_0 (1 of 2)

- States the assumption (numerical) to be tested

Example: The average number of TV sets in U.S. Homes is equal to three ($H_0: \mu = 3$)
- Is always about a population parameter, not about a sample statistic



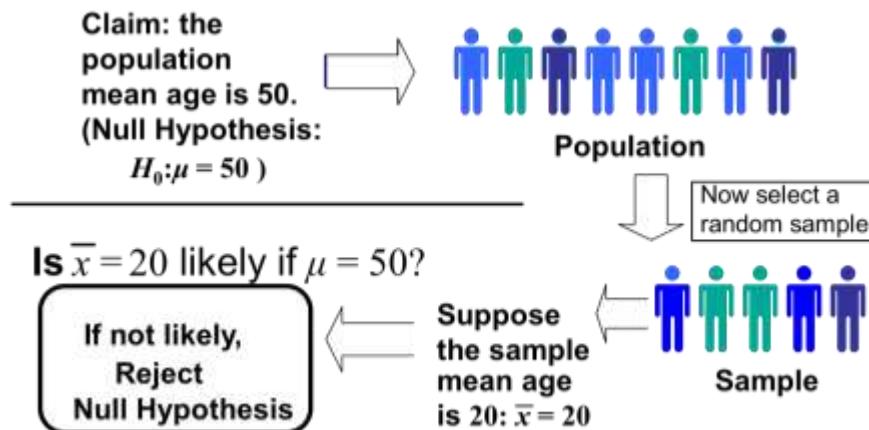
The Null Hypothesis, $H_{\text{sub}} 0$ (2 of 2)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains “=”, “≤” or “≥” sign
- May or may not be rejected

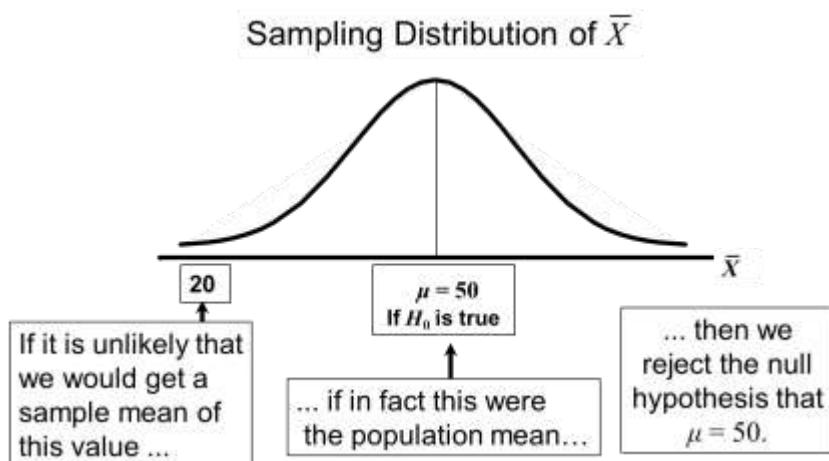
The Alternative Hypothesis, $H_{\text{Sub}} 1$

- Is the opposite of the null hypothesis
 - e.g., The average number of TV sets in U.S. homes is not equal to 3 ($H_1: \mu \neq 3$)
- Challenges the status quo
- Never contains the “=”, “≤” or “≥” sign
- May or may not be supported
- Is generally the hypothesis that the researcher is trying to support

Hypothesis Testing Process



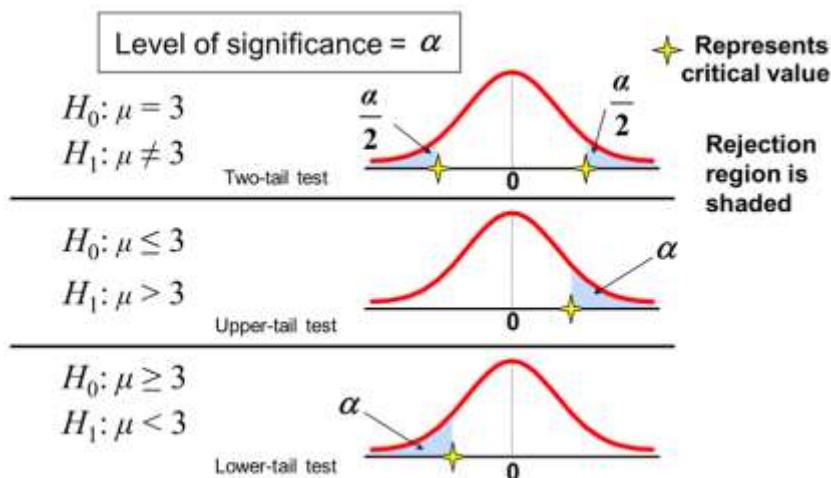
Reason for Rejecting H_0



Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α , (level of significance)
 - Typical values are 0.01, 0.05, or 0.10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region



Errors in Making Decisions (1 of 2)

- **Type I Error**

- Reject a true null hypothesis
 - Considered a serious type of error

The probability of Type I Error is α

- Called level of significance of the test
 - Set by researcher in advance

Errors in Making Decisions (2 of 2)

- **Type II Error**

- Fail to reject a false null hypothesis

The probability of Type II Error is β

Outcomes and Probabilities

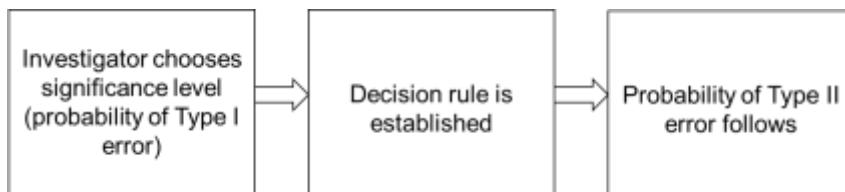
Possible Hypothesis Test Outcomes

		Actual Situation	
Decision	H_0 True	H_0 False	
Fail to Reject H_0	Correct Decision $(1 - \alpha)$	Type II Error (β)	
Reject H_0	Type I Error (α)	Correct Decision $(1 - \beta)$	

$(1 - \beta)$ is called the power of the test

Consequences of Fixing the Significance Level of a Test

- Once the significance level α is chosen (generally less than 0.10), the probability of Type II error, β , can be found.



Type I & II Error Relationship

- Type I and Type II errors can not happen at the same time
 - Type I error can only occur if H_0 is true
 - Type II error can only occur if H_0 is false

If Type I error probability $(\alpha) \uparrow$, then

Type II error probability $(\beta) \downarrow$

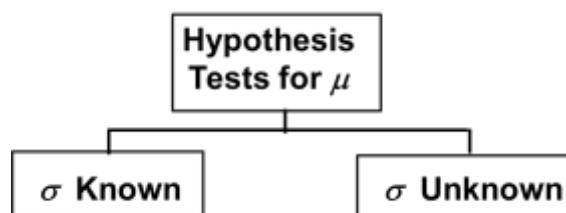
Factors Affecting Type II Error

- All else equal,
 - $\beta \uparrow$ when the difference between hypothesized parameter and its true value \downarrow
 - $\beta \uparrow$ when $\alpha \downarrow$
 - $\beta \uparrow$ when $\sigma \uparrow$
 - $\beta \uparrow$ when $n \downarrow$

Power of the Test

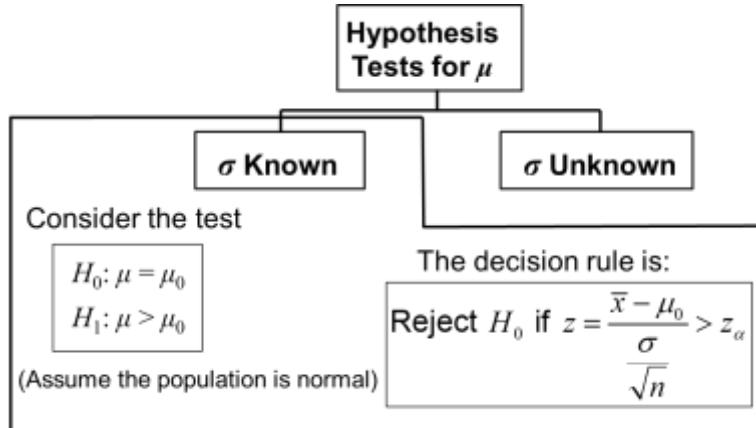
- The power of a test is the probability of rejecting a null hypothesis that is false
- i.e., Power = $P(\text{Reject } H_0 \mid H_1 \text{ is true})$
 - Power of the test increases as the sample size increases

Hypothesis Tests for the Mean



Section 9.2 Tests of the Mean of a Normal Distribution Sigma Known

- Convert sample result (\bar{x}) to a z value

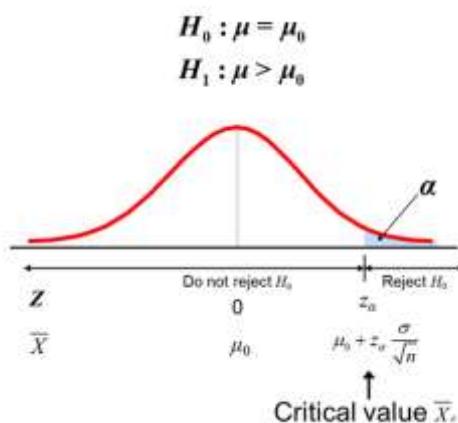


Decision Rule

Reject H_0 if $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > z_\alpha$

Alternate rule:

Reject H_0 if $\bar{x} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$



p-Value

- *p*-value: Probability of obtaining a test statistic more extreme (\leq or \geq) than the observed sample value given H_0 is true
 - Also called observed level of significance
 - Smallest value of α for which H_0 can be rejected

p-Value Approach to Testing

- Convert sample result (e.g., \bar{x}) to test statistic (e.g., z statistic)
- Obtain the *p*-value

$$\begin{aligned}
 p\text{-value} &= P(z > \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}, \text{ given that } H_0 \text{ is true}) \\
 &= P(z > \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \mid \mu = \mu_0)
 \end{aligned}$$
- Decision rule: compare the *p*-value to α
 - If *p*-value $< \alpha$, reject H_0
 - If *p*-value $\geq \alpha$, do not reject H_0

Example 1: Upper-Tail Z Test for Mean Sigma Known

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

Form hypothesis test:

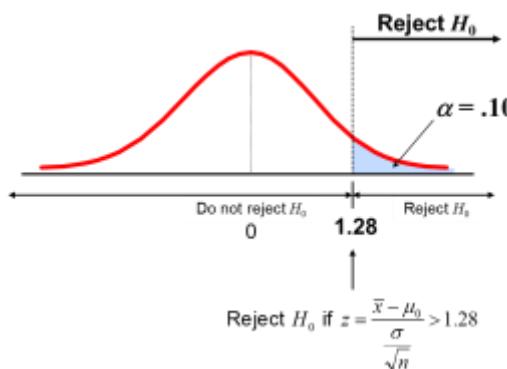
$H_0: \mu \leq 52$ the average is not over \$52 per month

$H_1: \mu > 52$ the average is greater than \$52 per month
(i.e., sufficient evidence exists to support the manager's claim)

Example 2: Find Rejection Region

- Suppose that $\alpha = .10$ is chosen for this test

Find the rejection region:



Example 3: Sample Results

Obtain sample and compute the test statistic

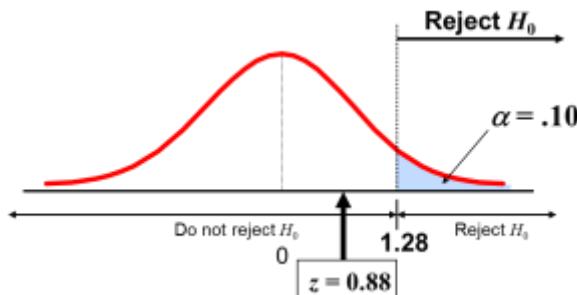
Suppose a sample is taken with the following results: $n = 64$, $\bar{x} = 53.1$ ($\sigma = 10$ was assumed known)

– Using the sample results,

$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{53.1 - 52}{\frac{10}{\sqrt{64}}} = 0.88$$

Example 4: Decision

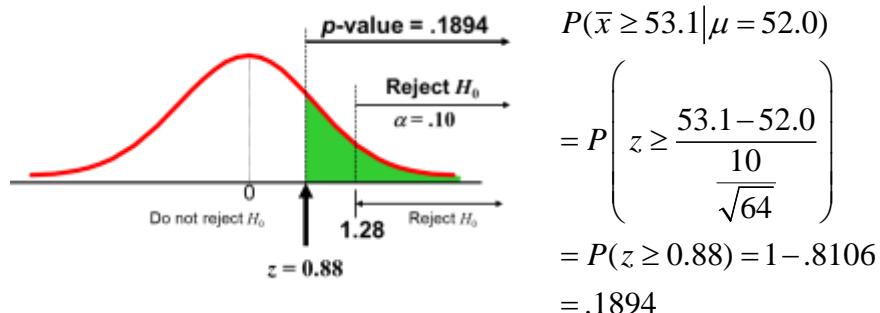
Reach a decision and interpret the result:



Do not reject H_0 since $z = 0.88 < 1.28$
 i.e.: there is not sufficient evidence that the mean bill is over \$52

Example 5: *p*-Value Solution

Calculate the *p*-value and compare to α
(assuming that $\mu = 52.0$)



Do not reject H_0 since p -value = .1894 > $\alpha = .10$

One-Tail Tests

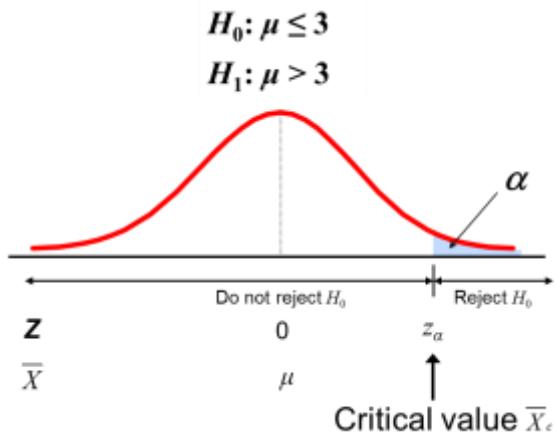
- In many cases, the alternative hypothesis focuses on one particular direction

$H_0 : \mu \leq 3$ \Rightarrow This is an upper-tail test since the alternative hypothesis is focused on the upper tail above the mean of 3

$H_0 : \mu \geq 3$ \Rightarrow This is a lower-tail test since the alternative hypothesis is focused on the lower tail below the mean of 3

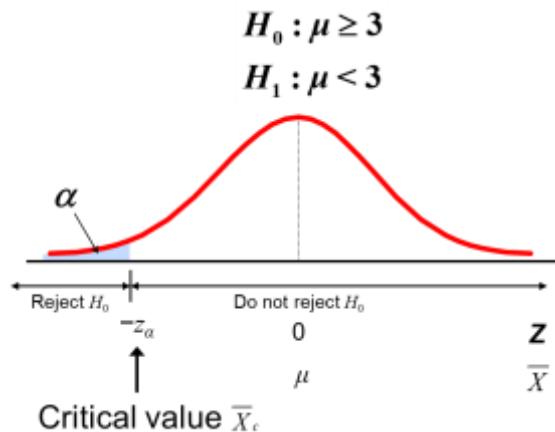
Upper-Tail Tests

- There is only one critical value, since the rejection area is in only one tail



Lower-Tail Tests

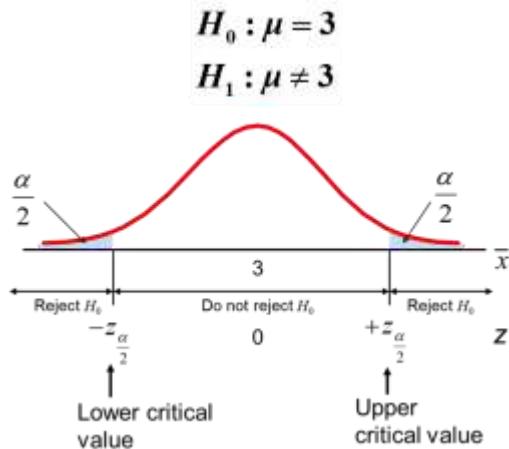
- There is only one critical value, since the rejection area is in only one tail



Two-Tail Tests

- In some settings, the alternative hypothesis does not specify a unique direction

- There are two critical values, defining the two regions of rejection



Hypothesis Testing Example (1 of 4)

Test the claim that the true mean # of TV sets in US homes is equal to 3. (Assume $\sigma = 0.8$)

- State the appropriate null and alternative hypotheses
 - $H_0: \mu = 3, H_1: \mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
 - Suppose that $\alpha = .05$ is chosen for this test
- Choose a sample size
 - Suppose a sample of size $n = 100$ is selected

Hypothesis Testing Example (2 of 4)

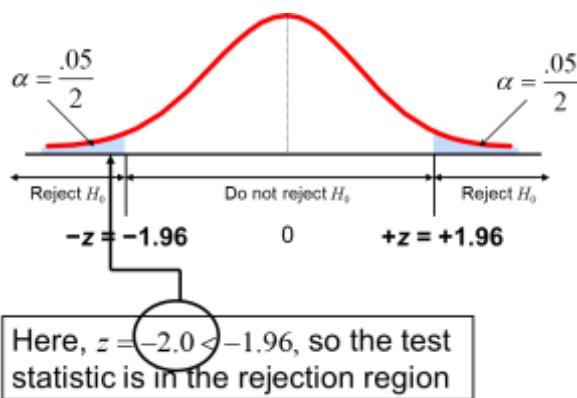
- Determine the appropriate technique
 - σ is known so this is a z test
- Set up the critical values
 - For $\alpha = .05$ the critical z values are ± 1.96
- Collect the data and compute the test statistic
 - Suppose the sample results are $n = 100$, $\bar{x} = 2.84$ ($\sigma = 0.8$ is assumed known)

So the test statistic is:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{2.84 - 3}{0.8 / \sqrt{100}} = \frac{-1.16}{0.08} = -2.0$$

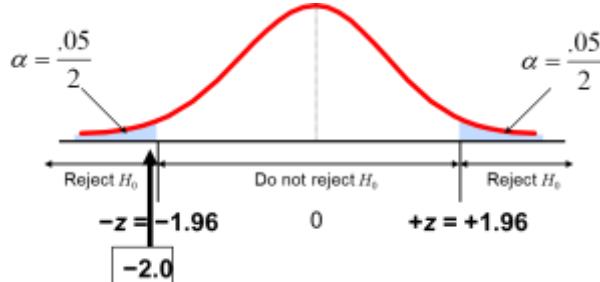
Hypothesis Testing Example (3 of 4)

- Is the test statistic in the rejection region?
Reject H_0 if $z < -1.96$ or $z > 1.96$; otherwise do not reject H_0



Hypothesis Testing Example (4 of 4)

- Reach a decision and interpret the result



Since $z = -2.0 < -1.96$, we reject the null hypothesis and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

P Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 35

35

Example 6: *p*-Value (1 of 2)

- Example: How likely is it to see a sample mean of 2.84 (or something further from the mean, in either direction) if the true mean is $\mu = 3.0$?

$\bar{x} = 2.84$ is translated to

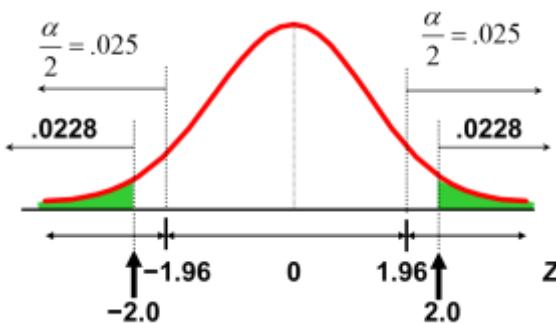
a z score of $z = -2.0$

$$P(z < -2.0) = .0228$$

$$P(z > 2.0) = .0228$$

***p*-value**

$$= .0228 + .0228 = .0456$$



P Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 36

36

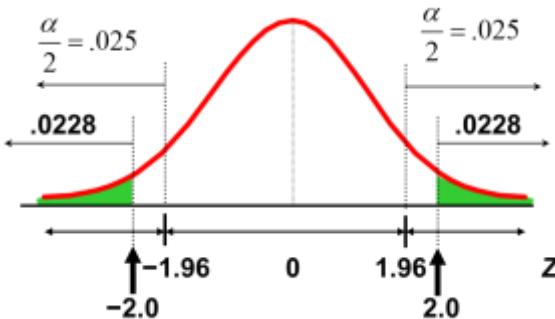
Example 6: *p*-Value (2 of 2)

- Compare the *p*-value to α
 - If p -value $< \alpha$, reject H_0
 - If p -value $\geq \alpha$, do not reject H_0

Here: p -value = .0456

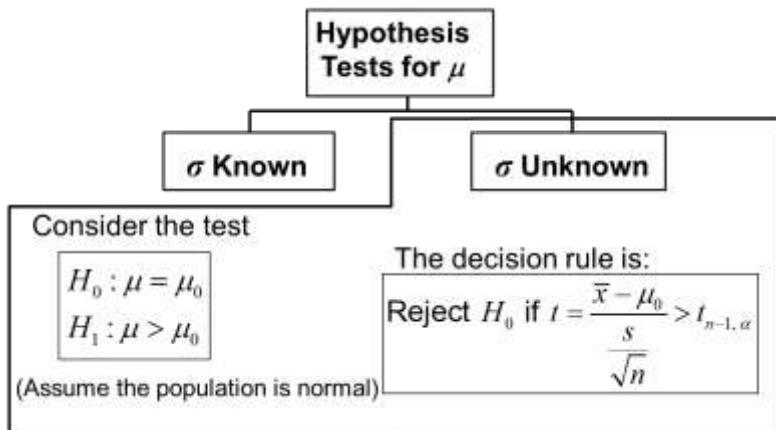
$$\alpha = .05$$

Since .0456 $< .05$,
we reject the null hypothesis



Section 9.3 Tests of the Mean of a Normal Population Sigma Unknown (1 of 2)

- Convert sample result (\bar{x}) to a *t* test statistic



Section 9.3 Tests of the Mean of a Normal Population sigma unknown (2 of 2)

- For a two-tailed test:

Consider the test

$$H_0: \mu = \mu_0 \quad (\text{Assume the population is normal, and the population variance is unknown})$$

$$H_1: \mu \neq \mu_0$$

The decision rule is:

$$\text{Reject } H_0 \text{ if } t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} < -t_{n-1, \frac{\alpha}{2}} \text{ or if } t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_{n-1, \frac{\alpha}{2}}$$

Example 7: Two-Tail Test Sigma Unknown

The average cost of a hotel room in Chicago is said to be \$168 per night. A random sample of 25 hotels resulted in $\bar{x} = \$172.50$ and $s = \$15.40$. Test at the $\alpha = 0.05$ level.

$$H_0: \mu = 168$$

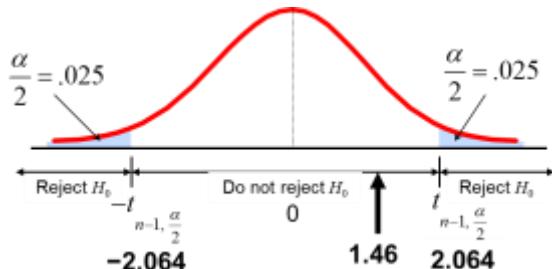
$$H_1: \mu \neq 168$$

(Assume the population distribution is normal)

Example Solution: Two-Tail Test

$$H_0: \mu = 168$$

$$H_1: \mu \neq 168$$



- $\alpha = 0.05$

- $n = 25$

- σ is unknown, so use a t statistic

$$t_{n-1} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{172.50 - 168}{\frac{15.40}{\sqrt{25}}} = 1.46$$

- Critical Value:

$$t_{24, 0.025} = \pm 2.064$$

Do not reject H_0 : not sufficient evidence that true mean cost is different than \$168

Section 9.4 Tests of the Population Proportion (1 of 2)

- Involves categorical variables
- Two possible outcomes
 - “Success” (a certain characteristic is present)
 - “Failure” (the characteristic is not present)
- Fraction or proportion of the population in the “success” category is denoted by P
- Assume sample size is large

Section 9.4 Tests of the Population Proportion (2 of 2)

- The sample proportion in the success category is denoted by \hat{p}

—
$$\hat{p} = \frac{x}{n} = \frac{\text{number of successes in sample}}{\text{sample size}}$$

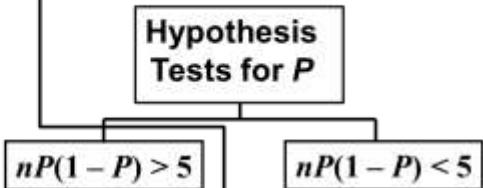
- When $nP(1-P) > 5$, \hat{p} can be approximated by a normal distribution with mean and standard deviation

—
$$\mu_{\hat{p}} = P \quad \sigma_{\hat{p}} = \sqrt{\frac{P(1-P)}{n}}$$

Hypothesis Tests for Proportions

- The sampling distribution of \hat{p} is approximately normal, so the test statistic is a z value:

$$z = \frac{\hat{p} - P_0}{\sqrt{\frac{P_0(1-P_0)}{n}}}$$



$$\begin{aligned} H_0 : P &= P_0 \\ H_1 : P &> P_0 \end{aligned}$$

Example 8: Z Test for Proportion

A marketing company claims that it receives 8% responses from its mailing. To test this claim, a random sample of 500 were surveyed with 25 responses. Test at the $\alpha = .05$ significance level.

Check:

Our approximation for P is

$$\hat{p} = \frac{25}{500} = .05$$

$$nP(1-P) = (500)(.05)(.95) \\ = 23.75 > 5$$

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 45

45

Z Test for Proportion: Solution

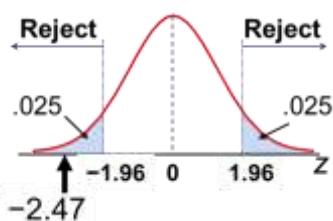
$$H_0 : P = .08$$

$$H_1 : P \neq .08$$

$$\alpha = .05$$

$$n = 500, \hat{p} = .05$$

Critical Values: ± 1.96



Test Statistic:

$$z = \frac{\hat{p} - P_0}{\sqrt{\frac{P_0(1-P_0)}{n}}} = \frac{.05 - .08}{\sqrt{\frac{.08(1-.08)}{500}}} = -2.47$$

Decision:

Reject H_0 at $\alpha = .05$

Conclusion:

There is sufficient evidence to reject the company's claim of 8% response rate.

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

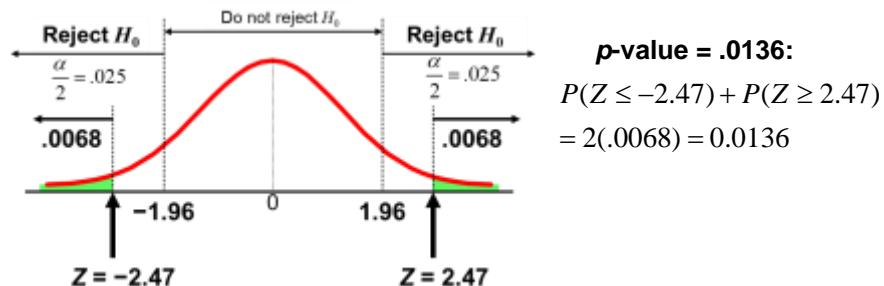
Slide - 46

46

p-Value Solution

Calculate the p -value and compare to α

(For a two sided test the p -value is always two sided)



Reject H_0 since $p\text{-value} = .0136 < \alpha = .05$

Section 9.5 Assessing the Power of a Test

- Recall the possible hypothesis test outcomes:

Key:
Outcome (Probability)

		Actual Situation	
Decision	H_0 True	H_0 False	
Do Not Reject H_0	Correct Decision $(1 - \alpha)$	Type II Error (β)	
Reject H_0	Type I Error (α)	Correct Decision $(1 - \beta)$	

- β denotes the probability of Type II Error

- $1 - \beta$ is defined as the power of the test

Power = $1 - \beta$ = the probability that a false null hypothesis is rejected

Type II Error

Assume the population is normal and the population variance is known. Consider the test

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$

The decision rule is:

Reject H_0 if $z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_\alpha$ or Reject H_0 if $\bar{x} > \bar{x}_c = \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$

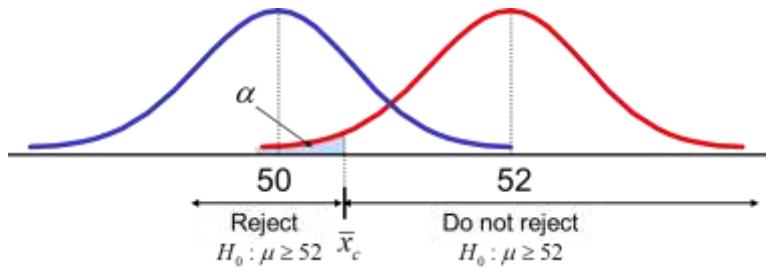
If the null hypothesis is false and the true mean is μ^* , then the probability of type II error is

$$\beta = P(\bar{x} < \bar{x}_c \mid \mu = \mu^*) = P\left(z < \frac{\bar{x}_c - \mu^*}{\frac{\sigma}{\sqrt{n}}}\right)$$

Type II Error Example (1 of 3)

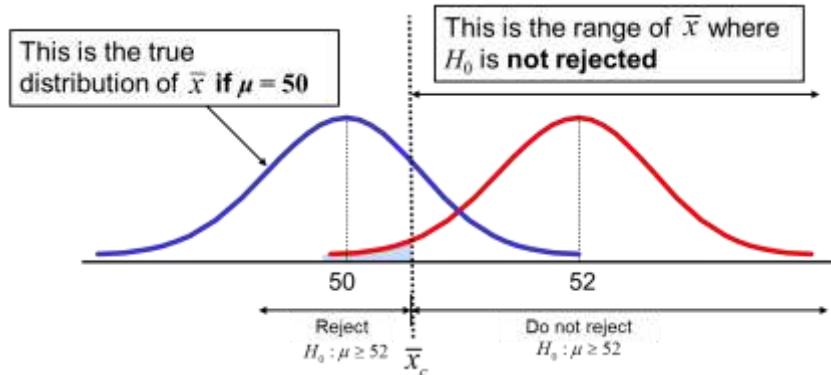
- Type II error is the probability of failing to reject a false H_0

Suppose we fail to reject $H_0: \mu \geq 52$ when in fact the true mean is $\mu^* = 50$



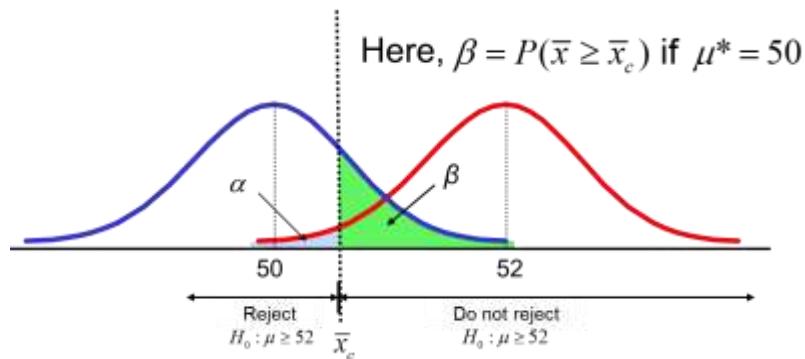
Type II Error Example (2 of 3)

- Suppose we do not reject $H_0 : \mu \geq 52$ when in fact the true mean is $\mu^* = 50$



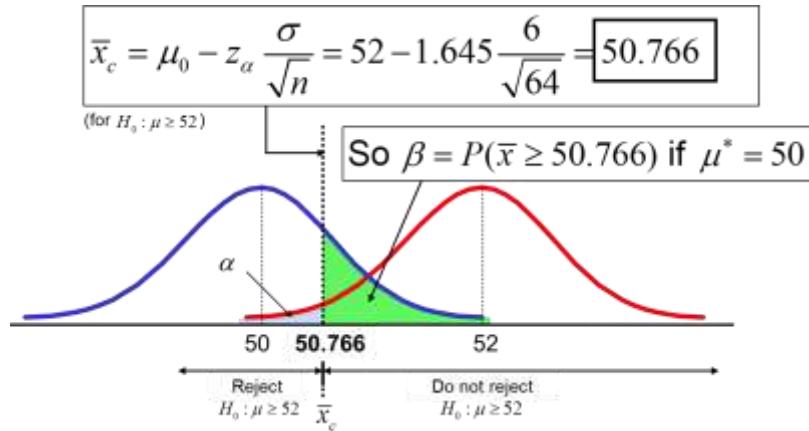
Type II Error Example (3 of 3)

- Suppose we do not reject $H_0 : \mu \geq 52$ when in fact the true mean is $\mu^* = 50$



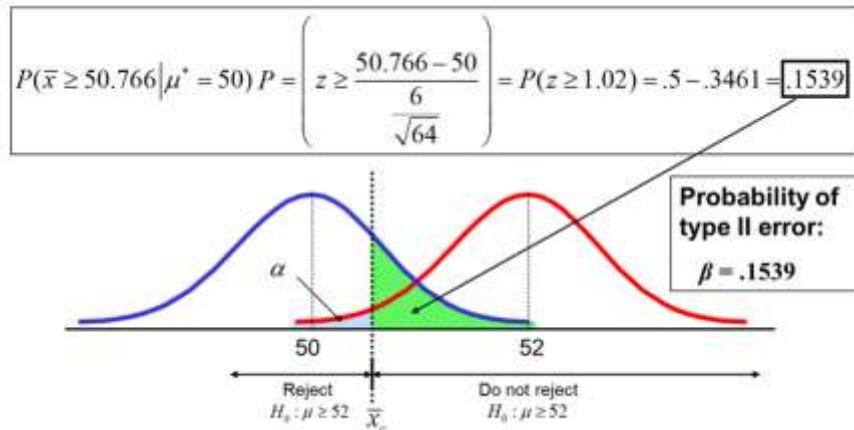
Calculating β (1 of 2)

- Suppose $n = 64$, $\sigma = 6$, and $\alpha = .05$



Calculating β (2 of 2)

- Suppose $n = 64$, $\sigma = 6$, and $\alpha = .05$



Power of the Test Example

If the true mean is $\mu^* = 50$,

- The probability of Type II Error $= \beta = 0.1539$
- The power of the test $= 1 - \beta = 1 - 0.1539 = 0.8461$

Key:
Outcome (Probability)

Actual Situation		
Decision	H_0 True	H_0 False
Do Not Reject H_0	Correct Decision $1 - \alpha = 0.95$	Type II Error $\beta = 0.1539$
Reject H_0	Type I Error $\alpha = 0.05$	Correct Decision $1 - \beta = 0.8461$

(The value of β and the power will be different for each μ^*)

Section 9.6 Tests of the Variance of a Normal Distribution (1 of 2)

- Goal: Test hypotheses about the population variance, σ^2 (e.g., $H_0: \sigma^2 = \sigma_0^2$)
 - If the population is normally distributed,

$$\chi^2_{n-1} = \frac{(n-1)s^2}{\sigma^2}$$

has a chi-square distribution with $(n-1)$ degrees of freedom

Section 9.6 Tests of the Variance of a Normal Distribution (2 of 2)

The test statistic for hypothesis tests about one population variance is

$$\chi^2_{n-1} = \frac{(n-1)s^2}{\sigma_0^2}$$

Decision Rules: Variance

Population variance

Lower-tail test: Upper-tail test: Two-tail test:

$$H_0: \sigma^2 \geq \sigma_0^2$$

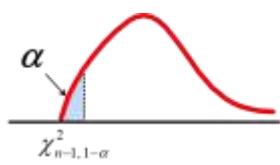
$$H_1: \sigma^2 < \sigma_0^2$$

$$H_0: \sigma^2 \leq \sigma_0^2$$

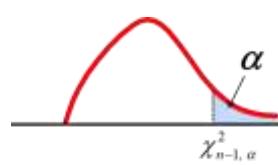
$$H_1: \sigma^2 > \sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0^2$$

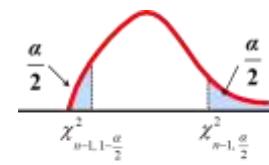
$$H_1: \sigma^2 \neq \sigma_0^2$$



Reject H_0 if
 $\chi^2_{n-1} < \chi^2_{n-1, 1-\alpha}$



Reject H_0 if
 $\chi^2_{n-1} > \chi^2_{n-1, \alpha}$



Reject H_0 if
or $\chi^2_{n-1} > \chi^2_{n-1, \frac{\alpha}{2}}$
 $\chi^2_{n-1} < \chi^2_{n-1, 1-\frac{\alpha}{2}}$

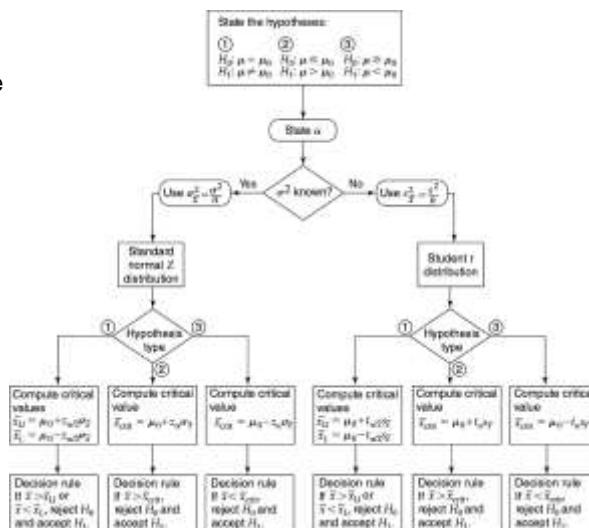
Chapter Summary

- Addressed hypothesis testing methodology
- Performed z Test for the mean (σ known)
- Discussed critical value and p -value approaches to hypothesis testing
- Performed one-tail and two-tail tests
- Performed t test for the mean (σ unknown)
- Performed z test for the proportion
- Discussed type II error and power of the test
- Performed a hypothesis test for the variance (χ^2)

Appendix: Guidelines for Decision Rule (1 of 2)

Figure 9.11

Guidelines for Choosing the Appropriate Decision Rule for a Population Mean



Appendix: Guidelines for Decision Rule (2 of 2)

Figure 9.12

Guidelines for Choosing the Appropriate Decision Rule for a Population Proportion

