OBJECTIVES

- Explain how managers of firms that operate in an oligopoly market can use strategic decision making to maintain relatively high profits
- Understand how the reactions of market rivals influence the effectiveness of decisions in an oligopoly market

OLIGOPOLY: Characteristics

- A market structure characterized by few sellers and interdependent price/output decisions
- Few sellers. A handful of firms produce the bulk of industry output.
- Blockaded entry and exit. Firm are heavily restricted from entering or leaving the industry.
- Imperfect dissemination of Information. Cost, price and product quality information are withheld from uninformed buyers.
- Homogeneous or unique product. Oligopoly output can be perceived as homogeneous or distinctive.

OLIGOPOLY: A MARKET WITH A SMALL NUMBER OF FIRMS

- Characterized by interdependence and the need for managers to explicitly consider the reactions of rivals
- Protected by barriers to entry that result from government fiat, economies of scale, or control of strategically important resources

COOPERATIVE BEHAVIOR

- The small number of firms in an oligopoly market tends to encourage cooperative behavior (collusion).
 - Increase profits
 - Decrease uncertainty
 - Raise barriers to entry

COOPERATIVE BEHAVIOR

- Cartel: A collusive arrangement made openly and formally
 - Cartels, and collusion in general, are illegal in the United States.
 - Cartels maximize profit by restricting the output of member firms to a level that the marginal cost of production of every firm in the cartel is equal to the market's marginal revenue and then charging the market-clearing price.
 - The need to allocate output among member firms results in an incentive for the firms to cheat by overproducing and thereby increase profit.

PRICE AND OUTPUT DETERMINATION BY A CARTEL

FIGURE 11.1

Price and Output Determination by a Cartel

____ Managerial Economics, 8e Copyright @ W.W. & Company 2013

THE BREAKDOWN OF COLLUSIVE AGREEMENTS

 By producing a quantity of output that exceeds the quota established by a cartel, a firm can generally increase profits.

INSTABILITY OF CARTELS

FIGURE 11.2

Instability of Cartels

Managerial Economics, 8e Copyright @ W.W. & Company 2013

PRICE LEADERSHIP

- Price leadership: In oligopolistic industries, managers at one firm have significant market power and can set their price.
- Rivals then follow their lead.

PRICE LEADERSHIP

Assumptions

- There is a single firm, the price leader, that sets price in the market.
- There are also follower firms who behave as price takers, producing a quantity at which marginal cost is equal to price. Their supply curve is the horizontal summation of their marginal cost curves.
- The price leader faces a residual demand curve that is the horizontal difference between the market demand curve and the followers' supply curve.
- The price leader produces a quantity at which the residual marginal revenue is equal to marginal cost.
 Price is then set to clear the market.

PRICE LEADERSHIP BY A DOMINANT FIRM

FIGURE 11.3

Price Leadership by a Dominant Firm

Managerial Economics, 8e Copyright @ W.W. & Company 2013

- Duopoly: Market in which there are only two sellers
 - Firms produce identical products.
 - Rival managers make decisions simultaneously.
- When Rivals Are Few: Price Competition
 - Price competition tends to drive prices down to marginal cost and so should be avoided by managers.

- When Rivals Are Few: Price Competition (cont'd)
 - Example
 - Two firms with identical total cost functions: $TC_i = 500 + 4q_i + 0.5q_i^2$
 - Market demand: $P = 100 Q = 100 q_A q_B$
 - Marginal cost: $MC_i = 4 + q_i$

- When Rivals Are Few: Price Competition (cont'd)
 - Example (cont'd)
 - Set $MC_A = P$ to get firm A's reaction function: $4 + q_A = 100 - q_A - q_B$ $=> q_A = 48 - 0.5q_B$
 - Set MC_B = P to get firm B's reaction function: $4 + q_B = 100 - q_A - q_B$ $=> q_B = 48 - 0.5q_A$
 - Solve the reaction functions simultaneously: $q_A = q_B = 32$, P = 36, and each firm earns a profit of \$12

TABLE 11.1

Profit-Maximizing Output Responses of Managers of Firm A Given Their Assumptions about Firm B Output

If Firm B Produces	Then Firm A Produces		
0	32		
50	15.33		
96	0		

- When Rivals Are Few: Collusion
 - Example
 - Two firms with identical total cost functions: $TC_i = 500 + 4q_i + 0.5q_i^2$
 - Market demand: $P = 100 Q = 100 q_A q_B$
 - Marginal revenue: 100 2Q
 - Marginal cost: $MC_i = 4 + q_i$
 - Horizontal summation of MC: $Q = q_A + q_B = -8 + 2MC$ => MC = 4 + 0.5Q
 - Set MC = MR: 4 + 0.5Q = 100 2Q=> Q = 38.4 (q_i = 19.2) and P = 61.6
 - Total profit is \$843.20, or \$421.60 for each firm.

- When Rivals Are Few: Quantity (Capacity) Competition
 - Rivals make simultaneous decisions, have the same estimate of market demand, have an estimate of the other's cost function, and assume that the other firm's level of output is given.
 - Example 1: Monopoly by firm A
 - Market demand: $P = 100 Q = 100 q_A$
 - Marginal revenue: 100 2Q
 - Marginal cost: $MC_A = 4 + Q$
 - MC = MR: 4 + Q = 100 2Q => Q = 32 and P = 68

- When Rivals Are Few: Quantity (Capacity) Competition (cont'd)
 - Example 2: Firm B produces $q_B = 96$
 - Residual market demand to firm A: $P = 4 q_A$
 - Optimal output is $q_A = 0$
 - Example 3: Firm B produces $q_B = 50$
 - Residual market demand to firm A: $P = 50 q_A$
 - Optimal output is $q_A = 15.33$

• Example 4: General solution

• Market demand: $P = 100 - Q = 100 - q_A - q_B$

- Marginal revenue for firm A: MR = $100 2q_A q_B$
- Marginal cost for firm A: $MC_A = 4 + q_A$
- MC = MR yields firm A's reaction function:

 $4 + q_A = 100 - 2q_A - q_B \Longrightarrow q_A = 32 - (1/3)q_B$

- Firm B's reaction function: $q_B = 32 (1/3)q_A$
- Nash equilibrium: Solving the two reaction functions simultaneously yields $q_A = q_B = 24$, and each firm earns a profit of \$364.
- Figure 11.4: Cournot Reaction Functions for Firms A and B

COURNOT REACTION FUNCTIONS FOR FIRMS A AND B

FIGURE 11.4

Cournot Reaction Functions for Firms A and B

Managerial Economics, 8e Copyright @ W.W. & Company 2013

- The Cournot Scenario with More than Two Firms
 - Example
 - Market demand: $P = a b\Sigma Q_i$
 - Marginal revenue: MR = a (N + 1)bQ_i
 - $MC = c + eQ_i$
 - MC = MR: $c + eQ_i = a (N + 1)bQ_i$

 $=> Q_i = (a - c)/[(n + 1)b + e]$

- The Cournot Scenario with More than Two Firms
 - Example (Continued)
 - Table 11.2: Price, Output, and Profits with Multiple Cournot Competitors (with a = 100, b = 1, c = 4, and e = 1)
 - The addition of a small number of entrants in a Cournot situation can result in significant price competition and erosion of profits.

TABLE 11.2

Price, Output, and Profits with Multiple Cournot Competitors

Number of Competitors	Price	Percentage Decrease	Quantity/ Firm	Profit/ Firm	Total Quantity	Percentage Increase
Cartel	61.6		19.2	421.6	32	
2	52	15.58	24	364	48	25
3	42.4	31.17	19.2	52.96	57.6	50
4	36	41.56	16	-116	64	66.67
5	31.43	48.98	13.71	-217.88	68.57	78.57
6	28	54.55	12	-284	72	87.50
7	25.33	58.87	10.67	-329.33	74.67	94.44
8	23.2	62.34	9.6	-361.76	76.8	100
9	21.45	65.17	8.73	-385.75	78.55	104.55
10	20	67.53	8	-404	80	108.33
n	$\frac{4n+200}{n+2}$		$\frac{96}{n+2}$	$(11,824 - 2,000n - 500n^2)/(n + 2)^2$	$\frac{96n}{n+2}$	
∞	4	93.51	0	-500	96	150

- When Managers Move First: Stackelberg Behavior
 - When, in a Cournot environment, one firm moves first and optimizes production based on knowledge of its rival's reaction function, there is a first-mover advantage.

- Stackelberg Behavior (cont'd)
 - Example
 - Market demand: $P = 100 Q = 100 q_A q_B$
 - Marginal revenue for firm A: $MR_A = 100 2q_A q_B$
 - Marginal cost for firm A: $MC_A = 4 + q_A$
 - Firm B's reaction function: $q_B = 32 (1/3)q_A$
 - MC = MR given firm B's reaction function: $4 + q_A = 100 2q_A [32 (1/3)q_A] => q_A = 27.43$, $q_B = 22.86$, firm A's profit is \$377.71, and firm B's profit is \$283.67.
 - The first-mover advantage (additional profit) over the Cournot solution for firm A is \$13.71.

- Stackelberg Behavior (cont'd)
 - Example: When firm A has a lower cost, its first-mover advantage is increased.
 - Firm A's cost function: $TC_A = 500 + 4q_A + 0.5q_A^2$
 - Firm B's cost function: $TC_B = 500 + 10q_B + 0.5q_B^2$
 - Firm A's reaction function: $q_A = 32 (1/3)q_B$
 - Firm B's reaction function: $q_B = 30 (1/3)q_A$
 - If firm A goes first: P = \$51.143, $q_A = 28.286$, $\pi_A =$ \$433.429, $q_B = 20.571$, and $\pi_B =$ \$134.776.
 - If firm B goes first: P = \$51.429, $q_A = 23.714$, $\pi_A =$ \$343.551, $q_B = 24.857$, and $\pi_B =$ \$220.857.

Bertrand model

- Example: Two producers who sell differentiated but highly substitutable products (Compare with total competition MC=P, note demand function not inverse)
 - Assume MC = 0 for both firms
 - Demand for firm 1's product: $Q_1 = 100 3P_1 + 2P_2$
 - Demand for firm 2's product: $Q_2 = 100 3P_2 + 2P_1$
 - Total revenue for firm 1:

 $TR_{1} = P_{1}(100 - 3P_{1} + 2P_{2}) = 100P_{1} - 3P_{1}^{2} + 2P_{1}P_{2}$ $TR_{1} = TR_{11} + TR_{12}$

where $TR_{11} = 100P_1 - 3P_1^2$ and $TR_{12} = 2P_1P_2$

- Example: (cont'd)
 - Marginal revenue for firm 1: $MR_1 = \Delta TR_1/\Delta P_1 = (\Delta TR_{11}/\Delta P_1) + (\Delta TR_{12}/\Delta P_1)$ $MR_1 = 100 - 6P_1 + 2P_2$
 - Bertrand reaction function for firm 1: MR
 = MC₁ = 0: 100 6P₁ + 2P₂ = 0
 => P₁ = (50/3) + (1/3)P₂

- Example: Two producers who sell differentiated but highly substitutable products (cont'd)
 - Bertrand reaction function for firm 2: MR = MC₂ = 0: 100 - 6P₂ + 2P₁ = 0 => P₂ = (50/3) + (1/3)P₁
 - Solving the two reaction functions simultaneously yields: $P_1 = P_2 = 25 , $q_1 = q_2 = 75$, $\pi_1 = \pi_2 = $1,875$.

BERTRAND REACTION FUNCTIONS AND EQUILIBRIUM FOR FIRMS 1 AND 2

FIGURE 11.5

Bertrand Reaction Functions and Equilibrium for Firms 1 and 2

- Example: Two producers who sell differentiated but highly substitutable products and collude or merge
 - $TR = TR_{11} + TR_{22} + TR_{12} = 100P_1 3P_1^2 + 100P_2 3P_2^2 + 4P_1P_2$
 - $MR_1 = 100 6P_1 + 4P_2$
 - $MR_2 = 100 6P_2 + 4P_1$

- Example: Two producers who sell differentiated but highly substitutable products and collude or merge (cont'd)
 - Reaction function for firm 1 (MR₁ = 0): P₁ = (50/3) + (2/3)P₂
 - Reaction function for firm 2 (MR₂ = 0):
 P₂ = (50/3) + (2/3)P₁
 - Solving the two reaction functions simultaneously yields: $P_1 = P_2 = \$50$, $q_1 = q_2 = 50$, $\pi_1 = \pi_2 = \$1,875$.